Women have now shown that they can take a college course without injury to their health and with great benefit to their intellectual powers. It remains to be proved that a college course will produce its natural fruits in at least a handful of women who shall take a proper share in the intellectual activity of their countrymen. There are plenty of women who are well-educated; there are very few who are engaged in making additions to the world's stock of knowledge.

Our motive is not sympathy for girls who would like to study a little more; it is to offer an additional incentive to gifted women to become the guides and examples of younger students, and to
to enable the few who are capable of doing the hardest kind of intellectual work, to aid in the long task of wrestling knowledge from nature.

Women. It is to be hoped that a college committee will provide for some of these girls. It is to be hoped that a Society, the members of which will engage in the intellectual activity of their community, will be formed; there are so many educated girls who are engaged in making contributions to the world's store of knowledge. Our motive is not sympathy for girls who would like to study a little more if it were as easy as study in college, but to make the effort of women to become the guides and examples of younger students, and to
Introductory remarks.

Answer questions which might be posed and deserve answers.

1. Can research be carried on effectively at the post-doctorate level now that foreign universities are not available? Drop in post-doctorate applicants immediately after October 1939. Experience last 2 yrs. Marked increase in proportion of applicants with Ph.D. Especially conspicuous this year. Type of opportunities and equipment and leadership available in this country. Loss of contact with utterly different intellectual environment but stimulus of new associations and person-
abilities. Exchange within boundaries of U.S.A. Many European leaders now in our universities. Adjustment made in 1939. These possibilities now accepted by those qualified for our fellowships.

2. How is the work to be carried out on such fellowships to be correlated with the war emergency. Aspects of the problem (a) People specially fitted for war projects not likely to apply. Needed immediately in war effort. Dearth of applicants in physics and chemistry this year. Long term aspects of this. Record of our past fellows Drl. Jupnik this year. Our attitude if we shall not be financing war work directly. Shall we finance projects not directly or immediately
related to war problems. (x) Impossible to foresee implications and needs. Seemingly remote problems may become overnight of urgent importance. Training must have preceded crisis.

"imperative to continue to support research for its own sake. If no practical application, need for maintenance of scholarly traditions of work. The greater the variety of subjects pursued the better fortified we are for the future, and the our conservation of scholarly ideals. No one can foresee the needs of the future. Responsibilities will fall to women. We perhaps in the crucial position in relation to the problem.

(y) Field with no relation to war effort. Other openings lacking to women, or
Use of fellowship best use of her time in preparing for responsibilities of leadership which will await her at close of war. Where there is coincidence of war needs and fellowship projects, welcome, but awards should not be made on that basis. Must conserve other intellectual interest. Must secure uninterrupted succession of scholars.

Quote Rockefeller Foundation: "Pure research, the clean urge to gain new knowledge, the sympathetic appreciation of imaginative scholarship even when it seems remote and unrelated so we must steadfastly sponsor or our vital intellectual resources will fail us in the days to come." Awards of current year reflect this conviction on part of Awards Comm.
Fellows Born: Austria, Connecticut, Denmark, Indiana, Maryland, Massachusetts, New Jersey, New York, Russia.

Include 5 from field of Humanities: 2 from English Lit., 1 Renaissance Art., 1 Archaeology; 3 from Social Sciences: 1 Law, 1 Economics, 1 Anthropology; 3 from Biol. Sci., 1 Botany, 1 Physiology 3 from Phys. Sci., 1 from Astron., 1 Math., 1 Meteor.

Distribution remarkably uniform considering mode of selection which is without reference to fields. Find shift in topics, but broad fields remain about same in distribution.
What for the future?
Immediate, certainly keep on with fellowships increasing if possible.
Other openings for help.
More Latin-American Fellowships; grants in aid.
What they do. Academic careers for most part, where they are serving with distinction—college presidents, heads of departments, college professors and instructors with various ranks, research positions. More recently a wider variety of openings to women in fields of intellectual endeavor, and find our fellows entering them, equipped to make the most of their opportunities.
The holders of the fellowships have not worked wonders as yet, and may never attain to that; but the greater achievement in scholarship, the larger experience of life and the wider intellectual horizon made possible to them by the fellowship cannot fail to yield a return. Members of the association often do not realize that the gift of a fellowship for a single year means to the recipient far more than one more year of additional study. It means encouragement that enables her to find the way or make one for the years of study when in many cases at least there had seemed to be no such possibility. It means, too, the mental fresh air and sunshine essential to healthy growth. I have
little doubt that every woman who has held a fellowship feels that what it has brought to her alone is worth many times the amount of the fellowship, and in reality the results redound to the advantage of many besides the holder.
Fellows

Ashkenaz: Bi. Sci. Response of cells to drugs. Ph.D.
Atkinson: 16th Century English Lit. Ph.D.
Colson: Anthrop. Study of Makah Indians of Neah Bay
Fitch: Economic Hist.
Maharam: Mathematics Ph.D.
Parker: Vegetation of U.S. Ph.D.
Randolph: Satire in 18th century Eng. Lit. Ph.D.
Rubenstein: Astrophysics Star Spectra
Scofield: Meteorology Weather prediction Ph.D.
Welker: Archaeology Metal types before 1000 B.C. Ph.D.
The quantum mechanical eigen-values and wave functions in exact and explicit form for systems consisting of one electron in the field of two nuclei possible with various ratios of the nuclear charges and values of the internuclear distance for use in predicting approximately on theoretical grounds, the properties of many-electron diatomic molecules.
Alternates this year

Mengers Biography of Henri de Regnier, French symbolist poet, influence on recent and contemporary English and American writers.

Tilton Biography of Oliver Wendell Holmes Now on V.C. faculty.

Elliott To make a first critical edition of the Vatican Mythographers in field of medieval Latin.

Doerflein Individual Benefits in Public Welfare. Political Science, study of Social Security program, etc.

Niederer Roman and Early Christian Architecture
Groothuis Dietary Factors influencing Phospholipid Metabolism in the Animal Organism. Use radioactive phosphorus as a tracer.

Rhines Experimental study of nervous system of chick embryo
Berliner Parks Botan.
Beehkastr.
Palmen. Deau med. Lit.

Bruckh.
Rech. Atron.

Jodres. Art.
Söld. Edde.
Young. Lit. + Oth.

Latin American.
Stre. Fornim.
Unknowns for Course 6.

Solids for Unknown E.

1. Na- K
2. Na- NH$_4$
3. Na- K- NH$_4$

Solutions.

Unknown II.

1. Ca- Mg
2. Ba- Ca (Sr)
3. Ba- Sr do not give along
4. Sr- Mg

Unknown III.

5. Al- Cr
6. Al- Ni
7. Al- Zn
8. Cr- Ni
9. Fe- Ni
10. Ni- Co
11. Co- Mn
12. Co- Zn
13. Mn- Zn
X. Ni- Zn
Y. Ni- Mn
Z. Cr- Co
<table>
<thead>
<tr>
<th></th>
<th>Unknown IV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Ag-Pb</td>
</tr>
<tr>
<td>15</td>
<td>Pb7 Hg"</td>
</tr>
<tr>
<td>16</td>
<td>Pb-Cu</td>
</tr>
<tr>
<td>17</td>
<td>Pb-Cd</td>
</tr>
<tr>
<td>18</td>
<td>Hg'+' Bi</td>
</tr>
<tr>
<td>19</td>
<td>Hg'+' Cd</td>
</tr>
<tr>
<td>20</td>
<td>Hg" Bi</td>
</tr>
<tr>
<td>21</td>
<td>Hg" Cu</td>
</tr>
<tr>
<td>22</td>
<td>Bi-Cd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unknown V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>H\textsubscript{3}AsO\textsubscript{3}</td>
</tr>
<tr>
<td>24</td>
<td>SbCl\textsubscript{3}</td>
</tr>
<tr>
<td>25</td>
<td>SnCl\textsubscript{2}</td>
</tr>
</tbody>
</table>
Unknown VI. General

26. As Hg Bi Al Ni Ba K
27. As Pb Cd Al Zn Mg K
28. As Pb Hg Cr Ni Sr NH₄
29. As Pb Fe Ni Ca Na K
30. As Pb Cu Al Co Mg K
31. As Pb Bi Cr Mn Ba Na
32. As Pb Cd Al Mn Sr K
33. As Pb Mg Cr Co Ca NH₄
34. As Hg Bi Al Zn Ba K
35. As Pb Cd Cr Ni Ba Na K
All nitrates except H₂AsO₃
36. HCl Sn Bi Cr Ni Ba Na
37. " Sn Cd Al Ni Ca Na
38. " Sn Cu Al Zn Sr Na
39. " Sn Bi Al Mn Ca Na
40. " Sb Cu Cr Ni Ca NH₄
41. " Sb Cd Al Zn Ca K

All Chlorides
42. HNO₃ Ag As Hg Al Mn Ca NH₄
43. As Pb Cd Cr Ni Ca Na
44. As Ag Bi Al Zn Ca Na
45. As Pb Cd Fe Ni Sr Na
46. Ag Cd As Fe Ni Sr Na
47. Ag As Cd Al Co Ba NH₄⁺
<table>
<thead>
<tr>
<th>Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NH₄Cl 26. BaCO₃ (SO₄)</td>
</tr>
<tr>
<td>2. KCl CaCO₃ 26a BaCl₂</td>
</tr>
<tr>
<td>3. NaCl CaCl₂ 25b Ba(NO₃)₂</td>
</tr>
<tr>
<td>4. KBr 26b SrCO₃</td>
</tr>
<tr>
<td>5. KI Ca(NO₃)₂ 27a SrBr₂</td>
</tr>
<tr>
<td>6. (NH₄)₂SO₄ 27b Sr(NO₃)₂</td>
</tr>
<tr>
<td>7. K₂C₂O₄ 27c SrCl₂</td>
</tr>
<tr>
<td>8. KClO₃ 28 BaSO₄</td>
</tr>
<tr>
<td>9. KNO₃ 29 SrSO₄</td>
</tr>
<tr>
<td>10. K₃AsO₄ 30 CaSO₄</td>
</tr>
<tr>
<td>11. K₄Sb₂O₇ 31 Ca₃(PO₄)₂</td>
</tr>
<tr>
<td>12. K₃AsO₃ 31a CaHPO₄</td>
</tr>
<tr>
<td>13. K₂CO₃ 32 Ba₃(PO₄)₂</td>
</tr>
<tr>
<td>14. K₂SO₄ 33 CaC₂O₄</td>
</tr>
<tr>
<td>15. K₂Cr₂O₇ 34 SrC₂O₄·NO₃·Cl</td>
</tr>
<tr>
<td>16. Na₂SO₄ 35 MgNH₄PO₄</td>
</tr>
<tr>
<td>17. Na₂B₄O₇ 36 MgNH₄AsO₄·SO₄</td>
</tr>
<tr>
<td>18. Na₂SO₂O₃ a little NaCl</td>
</tr>
<tr>
<td>19. HNO₃ 37 CaF₂</td>
</tr>
<tr>
<td>20. H₂C₂O₄·H₂O 38 MgCO₃, tr. Cl</td>
</tr>
<tr>
<td>21. H₂C₂O₄·H₂O 39 MgSO₄</td>
</tr>
<tr>
<td>22. NaK₂C₂O₄·H₂O 40 FePO₄</td>
</tr>
<tr>
<td>22b SUGAR 41 Fe₂O₃</td>
</tr>
<tr>
<td>23. HCl, dil. 41a Al₂PO₄·SO₄·NH₄</td>
</tr>
<tr>
<td>24. H₃BO₃ 42 FeS.</td>
</tr>
</tbody>
</table>
43. Al₂O₃
44. Cr₂O₃
45. Fe(NH₄)₂(SO₄)₂, tr. K
46. Al₂(SO₄)₃
47. KCr(SO₄)₂
48. NH₄CNS
49. NaFe(C₂O₄)₂
50. MnSO₄
51. MnCl₂
52. CoSO₄
52a. CoC₂O₄
53. MnC₂O₄
54. NiCO₃, much Mn
55. ZnCO₃
56. Ni₃(PO₄)₂, tr. Cl
57. Ni(NO₃)₂
58. Co(NO₃)₂
58a. Co₃(PO₄)₂
59. NiSO₄
59a. NiC₂O₄
60. ZnSO₄
61. ZnS
62. ZnC₂O₄
63. Hg(NO₃)₂
64. BiI₃
65. HgS
66. HgO yellow
68. CuCO₃
69. Cu₃(PO₄)₂, tr. CO₃, SO₄
70. Bi(NO₃)₃, tr. Cl
71. Cu(NO₃)₂
72. Cd(NO₃)₂
73. CuSO₄
74. CdSO₄
75. HgI₂
76. HgCl₂
77. HgCl
78. Pb(NO₃)₂
79. Pb(C₂H₃O₂)₂
80. PbI₂, tr. C₂H₅O₂, K, Fe, SO₃
81. PbBr₂
82. PbSO₄
83. PbCl₂
84. PbCO₃
85. PbCrO₄
86. PbS
87. CdCO₃, tr. Cl
88. HgNO₃
89. SnS₂
90. As₂S₃
91. Sb₂S₃, tr. Fe
92. AgNO₃
93. SnO₂
94.
95.
96. SbOCl Sn insol. Residue
97. Sb₂O₃
98. Sb₂O₅
99. As₂O₃ K
100. CoSO₄ Ni free
101.
102. Na₂SnO₃, tr. Cl, SO₄, CO₃
103. SiO₂
104. Brass
105. Woods: Bi, Sn, Cd, Pb, (Cu?)
106. Type: Pb, Sn, Cu, (Sb, tr. ?)
107. Solder: Pb, Sn, tr. Sb, (Fe?)
108. Babbit Pb, Sn, Zn, Bi, Cu, Al, 6b?
109. Paris Green, Cu As acetate
110. Chroma
111. Smalt. CoK₈O₄
112. Resolín SIO₂ k. Na. ac. Fe
113. Alunite Fe₂(F₄, Cl)₂
114. Siderite SIO₂ Cu(?)
115. Al, Na. Co₃, FeO₂, Al. Fe, Si O₄
Bottle 1.

99. As$_2$O$_3$
87. CdCO$_3$
70. BiONO$_3$
68. CuCO$_3$
67. HgO
2 acids

Bottle 2.

99. As$_2$O$_3$
97. Sb$_2$O$_3$
67. HgO
70. BiONO$_3$
1 acid

Bottle 3.

11. K$_4$Sb$_2$O$_7$
68. CuCO$_3$
87. CdCO$_3$
55. ZnCO$_3$
1 acid

Bottle 4.

36. MgNH_4AsO$_4$
68. CuCO$_3$
67. HgO
87. CdCO$_3$ (2%) 1 acid

Bottle 5.

84. PbCO$_3$
55. ZnCO$_3$
87. CdCO$_3$
70. BiONO$_3$
67. HgO
2 acids

Bottle 6a.

36. MgNH_4AsO$_4$ + C
68. CuCO$_3$
97. Sb$_2$O$_3$
1 acid

Bottle 6.

22. AgNO$_3$
74. CdSO$_4$
73. CuSO$_4$
63. Hg(NO$_3$)$_2$

Bottle 6a.

102. Na$_2$SnO$_3$
70. BiONO$_3$
11. K$_4$Sb$_2$O$_7$
1 acid

Hard.
<table>
<thead>
<tr>
<th>Bottle 7</th>
<th>Bottle 7a</th>
</tr>
</thead>
<tbody>
<tr>
<td>32. Ba$_3$(PO$_4$)$_2$</td>
<td>62. ZnC$_2$O$_4$</td>
</tr>
<tr>
<td>41. FePO$_4$</td>
<td>41. FePO$_4$</td>
</tr>
<tr>
<td>41a. AlPO$_4$</td>
<td>41a. AlPO$_4$</td>
</tr>
<tr>
<td>55. ZnCO$_3$</td>
<td>35. MgNH$_4$PO$_4$</td>
</tr>
<tr>
<td>2 acids</td>
<td>25. BaCO$_3$</td>
</tr>
<tr>
<td></td>
<td>34. SrC$_2$O$_4$</td>
</tr>
<tr>
<td></td>
<td>3 acids.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottle 7b</th>
<th>Bottle 7c</th>
</tr>
</thead>
<tbody>
<tr>
<td>31. Ca$_3$(PO$_4$)$_2$</td>
<td>62. ZnC$_2$O$_4$</td>
</tr>
<tr>
<td>35. MgNH$_4$PO$_4$</td>
<td>34. SrC$_2$O$_4$</td>
</tr>
<tr>
<td>55. MnC$_2$O$_4$</td>
<td>35. MgNH$_4$PO$_4$</td>
</tr>
<tr>
<td>2 acids.</td>
<td>41. FePO$_4$</td>
</tr>
<tr>
<td></td>
<td>2 acids (Cl)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottle 8</th>
<th>Bottle 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>46. Al$_6$SO$_4$)$_3$</td>
<td>47. K$_2$Cr$_2$(SO$_4$)$_4$</td>
</tr>
<tr>
<td>60. ZnSO$_4$</td>
<td>55. ZnO$_3$</td>
</tr>
<tr>
<td>39. NiSO$_4$</td>
<td>59a. NiC$_2$O$_4$</td>
</tr>
<tr>
<td>51. MnCl$_2$</td>
<td>52a. CoC$_2$O$_4$</td>
</tr>
<tr>
<td>76. HgCl$_2$</td>
<td>3 acids.</td>
</tr>
<tr>
<td>2 acids.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottle 10</th>
<th>Bottle 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>84. PbCO$_3$</td>
<td>36. MgNH$_4$PO$_4$</td>
</tr>
<tr>
<td>55. ZnCO$_3$</td>
<td>25b. Ba(NO$_3$)$_2$</td>
</tr>
<tr>
<td>41a. AlPO$_4$</td>
<td>55. ZnCO$_3$</td>
</tr>
<tr>
<td>58a. Co$_3$PO$_4$)$_2$</td>
<td>3 acids.</td>
</tr>
<tr>
<td>Bottle 12</td>
<td>Bottle 13</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>41. FePO₄</td>
<td>58a. Co₃(PO₄)₂</td>
</tr>
<tr>
<td>41a. AlPO₄</td>
<td>59a. NiCO₂₄</td>
</tr>
<tr>
<td>53. MnC₂O₄</td>
<td>62. ZnC₂O₄</td>
</tr>
<tr>
<td>102. Na₂SnO₃</td>
<td>53. MnO₂O₄</td>
</tr>
<tr>
<td>2 acids.</td>
<td>41a. AlPO₄</td>
</tr>
<tr>
<td>Very troublesome</td>
<td>32. Ba₃(PO₄)₂</td>
</tr>
<tr>
<td>2 acids.</td>
<td>2 acids.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottle 13a</th>
<th>Bottle 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>54. NiCO₃</td>
<td>34. SrC₂O₄</td>
</tr>
<tr>
<td>58a. Co₃(PO₄)₂</td>
<td>33. CaC₂O₄</td>
</tr>
<tr>
<td>35. MgNH₄PO₄</td>
<td>47. K₂Cr₂(SO₄)₄</td>
</tr>
<tr>
<td>25. BaCO₃</td>
<td>54. NiCO₃ (1%)</td>
</tr>
<tr>
<td>26. CaCO₃</td>
<td>52a. CoC₂O₄</td>
</tr>
<tr>
<td>34. SrC₂O₄</td>
<td>3 acids.</td>
</tr>
<tr>
<td>3 acids.</td>
<td>Bottle 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottle 15</th>
<th>Bottle 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>36. MgNH₄AsO₄</td>
<td>11. K₄Sb₂O₇</td>
</tr>
<tr>
<td>32. Ba₃(PO₄)₂</td>
<td>36. MgNH₄AsO₄</td>
</tr>
<tr>
<td>49. NaFe(C₂O₄)₂</td>
<td>77. HgCl</td>
</tr>
<tr>
<td>55. ZnCO₃</td>
<td>27. SrCO₃</td>
</tr>
<tr>
<td>53. MnO₂O₄</td>
<td>26. CaCO₃</td>
</tr>
<tr>
<td>3 acids.</td>
<td>41a. AlPO₄</td>
</tr>
<tr>
<td>41. Cl</td>
<td>51. MnCl₂</td>
</tr>
<tr>
<td>3 acids.</td>
<td>3 acids.</td>
</tr>
</tbody>
</table>
Bottle 17.

97. Sb$_2$O$_3$
68. CuCO$_3$
62. ZnC$_2$O$_4$ + al.
53. MnC$_2$O$_4$
41. FePO$_4$
35. MgNH$_4$PO$_4$
25a. BaCl$_2$

4 acids.

Bottle 18.

92. AgNO$_3$
76. HgCl$_2$
70. BiONO$_3$ (Cl)
57. Ni(NO$_3$)$_2$
53. MnC$_2$O$_4$
41. FePO$_4$
26. CaCO$_3$
35. MgNH$_4$PO$_4$
32. Ba$_3$(PO$_4$)$_2$

5 acids.

Bottle 19.

102. Na$_2$SNO$_3$
76. HgCl$_2$
70. BiONO$_3$
60. ZnSO$_4$
46. Al$_2$(SO$_4$)$_3$
36. MgNH$_4$AsO$_4$
27. SrCO$_3$

4 acids.

Bottle 20.

68. CuCO$_3$
41a. AlPO$_4$
25b. Ba(NO$_3$)$_2$
27b. Sr(NO$_3$)$_2$

3 acids.

Bottle 21.

102. Na$_2$SNO$_3$
72. Cd(NO$_3$)$_2$
68. CuCO$_3$
55. ZnCO$_3$
41a. AlPO$_4$
36. MgNH$_4$PO$_4$
33. CaC$_2$O$_4$

25b. Ba(NO$_3$)$_2$

4 acids.
Bottle 21a.

10. K_2AsO_4
76. $HgCl_2$
62. ZnC_2O_4
53. MnC_2O_4
54. $ NiCO_3$
52a. CoC_2O_4
47. $K_2Cr_2(SO_4)_4$
35. $MgNH_4PO_4$
41a. $AlPO_4$

5 acids.

Bottle 22.

32. $Ba_3(PO_4)_2$
33. CaC_2O_4
27. $CaCO_3$
31. $Ca_3(PO_4)_2$
433. CaC_2O_4
26. $CaCO_3$
26b. $Ca(NO_3)_2$
24. H_3BO_3
26a. $CaCl_2$

6 acids.

Bottle 24.

8. $KClO_3$
56. $Ni_3(PO_4)_2$
9. KNO_3
24. H_3BO_3
13. K_2CO_3
17. Na_2SO_4

6 acids.

Bottle 25.

2. KCl
4. KBr
5. KI
7. $K_2C_2O_4$
13. K_2CO_3
24. H_3BO_3

6 acids.

Bottle 26.

2. KCl
4. KBr
5. KI
9. KNO_3
13. K_2CO_3
16. K_2SO_4

Bottle 27.

24. H_3BO_3
15. $K_2Cr_2O_7$
16. K_2SO_4
9. KNO_3
2. KCl

16. K_2SO_4
Drug Habits

- Adrenalin
- Quinine
- Barbiturates
- Absorbent Cotton
- Vaseline
- Metaphen
- Ether
- Cold Cream
- Quinine
- Aperitif
- Carminative
- Phosphate
- Bitter Tonic
- Alcohol
- Tincture
- Greek Port
- Elixir
- Juice
- Prednisone
- Phenobarbital
- Extract
- Paste
- Ointments
- Syrup
- Pills
- Tablets
- Paraffin
- Powders
- Salves
- Liniments
- Oils
Wearing Apparel

- Wool Sweaters
- Wool Socks
- Wool Underwear
- Linen Socks
- House Slippers
- Gloves
- Nylons
- Hats
- Hairnets
- Cloths
- Neckties
- Wash Cloths
- Towels
- Stocking Tails
- Socks
- Slacks

Bedding

- Sleeping Bags
- Blankets
- Cotton Towels
Food

Ripe Peaches
Miso
Marshmallows
Chocolate
P.K.
Salted Peanuts
Caramel

Miscellaneous

Flashlight Batteries + Bulb
Telegraph
Cup
Kerosene
Scissors + Scissors

Compass

Hunting Cups

Sewing Kit
Toilet Paper
\[
\frac{12}{4} \div 4 = 3 \quad \frac{30}{15} = 2 \quad 48 \div 42 = 1.1905 \quad 1.2 \div 4 = 0.3 \quad 9 \div 4 = 2.25 \quad 46 \div 2 = 23
\]
\[
500 + 600 = 1100 \quad 89 + 500 = 589 \quad 476 + 45 = 521 \quad 489.5 + 50 = 539.5 \quad 530 + 160 = 690
\]