<table>
<thead>
<tr>
<th>Chemical</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzyl Alcohol</td>
<td>C₇H₈O₃</td>
<td>(63)</td>
</tr>
<tr>
<td>Phenol</td>
<td>C₆H₅OH</td>
<td>(62)</td>
</tr>
<tr>
<td>HNO₃</td>
<td>35%</td>
<td>(64)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(61)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(37)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(76)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(75)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(17)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(96)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(42)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(42)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(20)</td>
</tr>
<tr>
<td>H₂O</td>
<td>(73)</td>
<td></td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(15)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(14)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(41)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(18)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(17)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(15)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(10)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(14)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(10)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(8)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(19)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(5)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(35)</td>
</tr>
<tr>
<td>NaOH</td>
<td>H₂O</td>
<td>(49)</td>
</tr>
</tbody>
</table>
XIX. Sarabain
Brenin (85)
Beppin (86)
Casal (88)
Chancellor (87)
H.J. (97)

β Galacto-metabolism
Brenin (90)
Beppin (91)
H.J. (97)
Koizumi (94)
S.I. (93)

β Galacto-metamorphosis
Brenin (90)
Beppin (91)
H.J. (97)
Koizumi (94)
S.I. (93)

Cis-Pasmandrin
Brenin (90)
Beppin (91)
H.J. (97)
Koizumi (94)
S.I. (93)

Trans-Pasmandrin
Beppin (91)
H.J. (97)
Koizumi (94)
S.I. (93)

Carbon in NaH (149) in Curo (152)

a. Mammals

Curo + NaH (153) (149)
15.2 (148) 16.0 (165)

b. Amphibians

Curo + NaH (153) (149)
15.2 (152) 15.7 (148)

1. Vertebrates

M + HgO (159)
2. Aquatic

M + HgO (159)

3. Amphibians

Brenin (138)
Chaline (136)

4. Reptiles

Brenin (138)

5. Birds

Wright (138)

6. Fishes

Wright (138)

7. Amphibians

Wright (138)

8. Reptiles

Wright (138)

9. Birds

Wright (138)

10. Fishes

Wright (138)

11. Mammals

Wright (138)
The University of Chicago


The University of Chicago

and then add 200 cc hot alcoholic yeast. The grimm...41.5 after drying 10% in vacuo, in filtering some alcohol from
the filtrate in comp. to about 50 cc. 1000 cc. cold alcohol and stir the
syrup containing of Brucin solution in a small volume from those in adding more alcohol until a final volume is 1 liter, close
alcohol and extract the solution of residue by CHCl₃. Get 5/6 of the
Brucin (some won't go) and more cold 4% solution of CHCl₃ got 260 cc. of a 90% Brucin salt.

The salt in 600 cc. hot and cold 500 cc. alcoh. and cold but pure
salts, add 5 cc. of alcoh. and take all distill of alcohol and then extract with
3 cc. of CHCl₃ to pretty free Brucin (90% going in). Bring the evaporation up to N/H₂O to take all
and add 1 cc. of 300 cc. cold alcohol and using a gunning salt pot, take all
the Brucin in 1 cc. Al. Here 5.2 cc. of CHCl₃ + the Brucin is in.

The Brucin is until permanently

of disorder in H₂O and added 25% NaOH. The Brucin will stick with HCl to form a small volume
alkaline reaction in B.W.B. filter after it will KCl (0.05 g) + small volume
alcoholic solution in B.W.B. added 1, added in cold
and 0.5 cc. of water, then added the salts of
the Brucin and then ad 20 cc. of water. The 53 cc. of water added in 600 cc. of
water and mixed, the solution was then made up to 1 liter, and the Brucin was found to get solid
insoluble

the Brucin. The hot solution was now boiled in a glass pot.

The ag. of KCl Brucin is 0.9%. To a small amount of
a material pot 7.2 cc. of water in a mixture and add 0.5 cc. of B.W.B. to form a small volume
part 1. (B.W.B. from Brucin by CHCl₃) 7.2 cc. of water, was now heated to 58°C to steam the H₂O (c and
part 1) 100% from Brucin by CHCl₃. The Brucin was now separated 1/2 g. and equal to 1 liter.

Mixture was taken up by an equal amount of cold alcohol when got a separation 21 cc. of
alcohol. Then mix 166.3 cc. of water at 57°C and
the Brucin with 100% of CHCl₃ and 100% of Brucin
and add 0.5 cc. of water to form a small volume.

The ag. of CHCl₃ Brucin is 100% in cc. 2.7 cc.
Now took the Brucin in the cold alcohol and equal to 2 lit. 33.5 cc. of
Brucin. The Brucin in CHCl₃ is 100% in cc. 2.7 cc.

The Brucin in CHCl₃ is 100% in cc. 2.7 cc.
Tried to trace the 67.6% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 1.2% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.

Took 3.3% browning due to 20° C. sec. 3. To divide it into 100 and add as to 0.746.
The University of Chicago

The author describes a series of experiments involving aqueous solutions and chemical reactions. The text mentions the use of salt (possibly sodium chloride) in various solutions and the preparation of a specific solution, which was then used in subsequent experiments. The author notes the use of a specific temperature (110-150°C) and mentions the preparation of a solution with a particular volume. The text is dense and technical, with specific chemical reactions and experimental procedures described in detail. The author concludes with a statement about the successful completion of the experiment.

The text contains several mathematical and chemical expressions, indicating a high level of detail in the experimental procedures. The author references specific volumes and temperatures, suggesting a rigorous approach to the experiment. The text is handwritten, with some corrections and annotations visible, indicating a refinement of the experimental protocol.

Overall, the document provides a detailed account of a scientific experiment, focusing on the preparation and properties of a particular solution, with a strong emphasis on the chemical reactions involved.
Took the 9.25 g of op. xx (or d-gluceraldehyde) in 10 molar hydrochloric acid. Add HCl to bring the solution to 0.3 g of solid CaCl₂. Add enough Me₂CO to bring the solution to a volume of 250 ml. Add 20 ml of concentrated HCl. Add more Me₂CO to bring the solution to a volume of 500 ml. Add 10 ml of concentrated HCl. Add more Me₂CO to bring the solution to a volume of 1000 ml. Add more Me₂CO to bring the solution to a volume of 2000 ml. Add more Me₂CO to bring the solution to a volume of 4000 ml. Add more Me₂CO to bring the solution to a volume of 8000 ml.

Took the 9.25 g of op. xx (or d-gluceraldehyde) in 10 molar hydrochloric acid. Add HCl to bring the solution to 0.3 g of solid CaCl₂. Add enough Me₂CO to bring the solution to a volume of 250 ml. Add 20 ml of concentrated HCl. Add more Me₂CO to bring the solution to a volume of 500 ml. Add 10 ml of concentrated HCl. Add more Me₂CO to bring the solution to a volume of 1000 ml. Add more Me₂CO to bring the solution to a volume of 2000 ml. Add more Me₂CO to bring the solution to a volume of 4000 ml. Add more Me₂CO to bring the solution to a volume of 8000 ml.

Took all the necessary precautions containing 10 ml of d-gluceraldehyde, 5% alcohol, and 20 ml of concentrated HCl. Add HCl to bring the solution to 0.3 g of solid CaCl₂. Add enough Me₂CO to bring the solution to a volume of 250 ml. Add 20 ml of concentrated HCl. Add more Me₂CO to bring the solution to a volume of 500 ml. Add 10 ml of concentrated HCl. Add more Me₂CO to bring the solution to a volume of 1000 ml. Add more Me₂CO to bring the solution to a volume of 2000 ml. Add more Me₂CO to bring the solution to a volume of 4000 ml. Add more Me₂CO to bring the solution to a volume of 8000 ml.

Took all the necessary precautions containing 10 ml of d-gluceraldehyde, 5% alcohol, and 20 ml of concentrated HCl. Add HCl to bring the solution to 0.3 g of solid CaCl₂. Add enough Me₂CO to bring the solution to a volume of 250 ml. Add 20 ml of concentrated HCl. Add more Me₂CO to bring the solution to a volume of 500 ml. Add 10 ml of concentrated HCl. Add more Me₂CO to bring the solution to a volume of 1000 ml. Add more Me₂CO to bring the solution to a volume of 2000 ml. Add more Me₂CO to bring the solution to a volume of 4000 ml. Add more Me₂CO to bring the solution to a volume of 8000 ml.
ok 4 g in 100 ml water, 160° C. This was poured into a mixture of acetic anhydride, glacial acetic acid, and glacial acetic anhydride. The mixture was heated to 150° C. for 15 min.

Took 50% CFX 1,000 g. Place the reagent in 1,000 ml water and heat to 70° C.

I tried again with 50 ml of 95% acetic acid and 50 ml of 30% acetic anhydride. The mixture was heated to 170° C. for 10 min.

Take 100 g of 95% acetic acid and 50 ml of 30% acetic anhydride. Place the mixture in 1,000 ml water and heat to 70° C.

I tried again with 50 ml of 95% acetic acid and 50 ml of 30% acetic anhydride. The mixture was heated to 170° C. for 10 min.

Take 100 g of 95% acetic acid and 50 ml of 30% acetic anhydride. Place the mixture in 1,000 ml water and heat to 70° C.

I tried again with 50 ml of 95% acetic acid and 50 ml of 30% acetic anhydride. The mixture was heated to 170° C. for 10 min.

Take 100 g of 95% acetic acid and 50 ml of 30% acetic anhydride. Place the mixture in 1,000 ml water and heat to 70° C.

I tried again with 50 ml of 95% acetic acid and 50 ml of 30% acetic anhydride. The mixture was heated to 170° C. for 10 min.

Take 100 g of 95% acetic acid and 50 ml of 30% acetic anhydride. Place the mixture in 1,000 ml water and heat to 70° C.

I tried again with 50 ml of 95% acetic acid and 50 ml of 30% acetic anhydride. The mixture was heated to 170° C. for 10 min.
The University of Chicago

17° Burein salt & x glycerine. Took 2.86 g. to 100 cc. about 70% glycerine and dissolve
in 10 cc. 

30° Burein solution in glycerine. 70% of glycerine. 

Burein + 3.65% (KNO) 70° 5.7% solution on paper. Then both become permanently alkaline. Found that if now ag. salt is not to be 0.100. The next time salt is

12° Burein salt + 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Found that if now ag. salt is not to be 0.100. The next time salt is

20° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

19° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

18° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

9° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

8° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

6° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

19° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

18° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

17° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

16° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

15° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

14° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

13° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

12° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

11° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

10° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

9° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

8° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

7° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

6° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

5° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

4° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

3° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

2° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

1° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just

0° Burein in cold water. 3.4 cc. of 75% NaCl. 75° 3% solution on paper. Then both become permanently alkaline. Just
Boric acid.

Took 10 grms. Ca 7 K BrCr (75o/o acee.)


Ca. 7 K BrCr + WaCr (55o/o acee.).

Took 10 grms. Ca 7 K BrCr (75o/o acee.) and 1.50 grms. NaBr (55o/o acee.)

Boric acid.

Took 10 grms. Ca 7 K BrCr (75o/o acee.)


Ca. 7 K BrCr + WaCr (55o/o acee.).

Took 10 grms. Ca 7 K BrCr (75o/o acee.)

The University of Chicago

This oil was now purified by distilling with benzene till dem. active alk. was left 134 g. (as

25 mm. and lead left 13.4 g. as

KCl did not help: using Benzene at 25 mm. and lead left 13.4 g.

25 mm. and lead left 13.4 g.

the solution of benzene was dissolved in 350 cc. of alcohol and recovered as a crystals: make

up 250 cc. of water at 25°. 100 cc. ether was added and got a huge amount of a tar-like

salt. Further addition of benzene raised the height of the layer and got more ether. This

was decanted and filtered in the dry air. Solution in water with 10°C. cold water. Now take the

resting 26.3 g. of the ethereal. The oil was 0.06 cc. but the cold water with 10°C. was

filtered through and got 5 cc. of oil and 1 cc. of absorb. 3-4 cc. harnen oil absorbed. And this oil was boiled in 30 cc.

and 2 cc. of benzene. Now oil was distilled in a fraction at 178°C. 100°. A. 16.7 cc. of oil was

collected. Now combine this in 100 cc. of alcohol. 8 g. of oil was collected with 10°C. cold water.

This oil is not in crystalline form. The 16 g. of oil was distilled in 100 cc. of benzene and got a

large amount of oil. 7.9 cc. The alcohol of the filtrate from this 16.7 cc. and was distilled in

82°. 5° C. of the oil was distilled out. This was decanted in 300°.

8 g. of oil.

Now it is distilled in water, mid. 82°. 5° C. of the oil was distilled out. This was decanted in 300°.
26 Glycidyl chloride and 1870 HCl. Tox 1800. Diethyl ether, conc'd HCl and heat 27, with 45 cc HCl at 60-70° fom 1 hr until solution. HCl Conrad and add a solution of 1.5 g of HCl in 20 cc of ether. Filter off at once in Sf, and heat for 42 hrs 60° (to 60°). Color changes. Clame on with some p. (Naph with Naph-ethanol). Vacue at 323 mm. 38.5 x 32.6. 

The oil is then poured off into cold (dilute in cases). (Ad) 24.5 cc conc'd HCl (55°) HCl (24.5 cc HCl) am 19.5 cc 35 mm. AlCl3. An est. salt mixture 3 X HCl, with ether, to four vol. solvent, wash out, and then 3 x HCl, oil in 1 cc. The oil is then filtered into a cold tol solution of the mixture. 

27 Lactate and 1870 HCl. Tox 1800. 45% conc'd HCl, 27 K xyp 18327° 59.25°. 

The mixture was dissolved in 10 cc of ether. 

3.9% white solid. 2 ml. of ether in 5 min. The ether was then filtered off. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether. 

The solid is then dissolved in ether and precipitated with HCl. 

The solid is then filtered off and washed with ether.
The University of Chicago

The author, while on a trip to Europe, obtained a sample of benzine and

\[ R \text{H}_{2} \text{C} \text{CH}_{2} \text{OH} \]

and distilled it. He then analyzed the benzine, finding that it was composed of 98% benzene and 2% toluene.

The benzene was then distilled further, and the author observed that the benzene boiled at 137°C. He then dissolved the benzene in ether and added a solution of hydrochloric acid, observing that it formed a white precipitate.

The precipitate was then filtered and analyzed, finding that it contained benzene and hydrochloric acid.

The author then dissolved the precipitate in ether and added a solution of sodium hydroxide, observing that it formed a white precipitate again. After filtering and drying, the precipitate was analyzed and found to be benzene.

The author then conducted a series of experiments to determine the properties of benzene, including its solubility in water and its reactivity with various chemicals.

In conclusion, the author found that benzene is a valuable chemical and can be used in a variety of applications. However, it is important to handle benzene with care due to its flammability and toxicity.
The University of Chicago

dissolved in H2O (should have 750 cc per g) completely and 2g. NaCl divided into 200 mL. Thionic acid.

To see what is reaction of quinine + quinidine salts by adding quinidine to NaCl, let all of line to 50 mL. This with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 mL. 8-HO made. On the time this with 10 cc are quinine salt 0.2 by adding quinidine to NaCl. Let all be line 30 M.
5.213 g salt boiled in 18 deg. in new 3 days 0.662 g HCl [only 0.078 last day].
This is 12.70 H2O; theory [Ca3Hb N6.04] 2 HCl 0.920 = 12.07 J0.

The analysis of salt new 9 days at 145 and 8 months at 45-60 0C. by a water in demineralized water and
3.0% by 2 HCl 0.920 C. in troy avoirdupois.
0.2086 g salt, each pair 0.4977 g Co 0.15755 g H2O

\[ \text{Eq.} \]

\[ \text{Eq.} \]
The University of Chicago

[Page 17]

[Handwritten text with chemical equations and processes, including the use of reagents like hydrochloric acid and sodium acetate, and experimental observations and calculations.]

...yield of this acid is 40%...
The salicylumic acid, i.e., 18.5% + 4.2% of water, was distilled in a vacuum until 0.1% of the total weight of the salicylumic acid was distilled. The residue was 2.5% of the original material. Then, the residue was washed with 2.5% of water. After that, the residue was heated to 100°C for 1 hr. The residue was then filtered and washed with 1% of water. The residue was then heated to 80°C to remove any remaining water.

To prepare the salicylumic acid, use 120g of ethyl alcohol and heat until the mixture is warm. Then, add the salicylumic acid to the hot mixture. The mixture will then be heated to 80°C. The mixture will then be filtered and washed with 1% of water.

The salicylumic acid was then dissolved in 200ml of water. Then, the solution was heated to 80°C to dissolve the remaining salicylumic acid. The solution was then filtered and washed with 1% of water. The remaining salicylumic acid was then heated to 80°C to dissolve it completely.

The salicylumic acid was then dissolved in 100ml of water. The solution was then heated to 80°C to dissolve the remaining salicylumic acid. The solution was then filtered and washed with 1% of water. The remaining salicylumic acid was then heated to 80°C to dissolve it completely.

The salicylumic acid was then dissolved in 100ml of water. The solution was then heated to 80°C to dissolve the remaining salicylumic acid. The solution was then filtered and washed with 1% of water. The remaining salicylumic acid was then heated to 80°C to dissolve it completely.

The salicylumic acid was then dissolved in 100ml of water. The solution was then heated to 80°C to dissolve the remaining salicylumic acid. The solution was then filtered and washed with 1% of water. The remaining salicylumic acid was then heated to 80°C to dissolve it completely.

The salicylumic acid was then dissolved in 100ml of water. The solution was then heated to 80°C to dissolve the remaining salicylumic acid. The solution was then filtered and washed with 1% of water. The remaining salicylumic acid was then heated to 80°C to dissolve it completely.

The salicylumic acid was then dissolved in 100ml of water. The solution was then heated to 80°C to dissolve the remaining salicylumic acid. The solution was then filtered and washed with 1% of water. The remaining salicylumic acid was then heated to 80°C to dissolve it completely.
Acetic acid, dilute and lactone. For lactone 15 cc acetic acid and 10 cc lactone 100 cc acetic acid, which was heated for 1 hour, 15 cc of dilute acid, 100 cc acetic acid, 10 cc lactone. The mixture was then cooled in an ice bath, filtered, and the solid was recrystallized from a mixture of ethanol and ether.

Benzaldehyde and lactone. Mix 1 cc of benzaldehyde with 24 cc of CCl₄ and heat in a water bath at 70°C. Cool, then add 1 cc of lactone and allow to stand for 24 hours. Filter off the solid, wash with ethyl alcohol, and recrystallize from a mixture of ethanol and ether. The yield is about 20%. The infrared spectrum of the product shows maxima at 3100 cm⁻¹ (C=O) and 2900 cm⁻¹ (C-H).
Bacine ac. sol. be made same after dissolving with KNC, get a soln. 11.7% to 12.3% w/v, the solution on trying ag. melt at 88° with effervescence; measure liquid mhd with a glass pan. 17% to 24% w/v. results which did not melt at 140°. From this it is uncertain whether a sol and, if any, of any bacine ac. is freed in evaporation. 2% or 4% AgNO₃ / HNO₃ 10.7% / CaCl₂ 1.3. 

Bacine ac. is freed in evaporation. 2% or 4% AgNO₃ / HNO₃ 10.7% / CaCl₂ 1.3.

Bacine ac. is freed in evaporation. 2% or 4% AgNO₃ / HNO₃ 10.7% / CaCl₂ 1.3.
The University of Chicago

340. Ethylate, heat, +HgO. Take 30g of Br2. 8H2O 10 per. BenzoicHCl 1100. ca. 98.10 g added. 100g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8

and added 400g of HgO to ethylate (0.7K) to mixture (heat to 35-40C). Heat per R. A. 6-8
The University of Chicago

357. Euthrite Na₂SO₄ and H₂O. 50 g. in 50 cc. 100° set 7.5. C. 7K 550° for 1 hr.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
and 40 g. Na₂SO₄ became one, as with Ba. (See No. 34). Heat C. 7.5 for 22 hr. (3 days) in bell jar.
Strychnine sky collate: 250 g., collied. Alcohol digested at 117 C, with rem. 5.9

Strychnine (boil 85 min): Compounds with R.I. 301.50, weight 210°. H.O. 290°. Perg. 230°. 15%

To 7 g., dry ether 175°-200°. 73% from 230°.

Put in disporters in 250 cc. of 80% alcohol 17°C. 10 C. in standing one night. 3.3 g. of XX salt.

Sink well; 175°-200°; 23°C. Small granules in very bright XX col. 5.5 g. salt and dissolves in 100 cc. of 5°. On cooling 6 g. 3.4 g. of XX, and

with meth. et 8F. Sine as in salt XX from alcohol. The salt XX from alcohol and

in 8F. 3.3 g. was found to lose formel in wet. On evaporation 14% very heavy in

mo. (2.2°/180° lost only 0.16% of) and then melted at 198°-201° in the same example.

Salt is well adapted for identification a XX coli. (See 3.4).

Strychnine x. glycerin: 2.5 g. 6F. Strychnine and digested with H2O 6.751 g.

Strychnine temp. 70°-80°, very heavy in m. Water 10% from alcohol. Alcohol it comes at

70°-100° off at 150°. s. a very light pm. about. Alcohol it comes at 70°-100° off at 150°. s.

alcohol is not well adapted for identification but and separate 6.7 from glycerin completely.

Strychnine 2.2°/180°: 4°. Strychnin with 2% of 6.3 g. of Strychnine

vapor to dry was 7.5 g. salt and div. in water. 4°. Strychnin dissolved in red clare.

vapor to dry was 7.5 g. salt and div. in water. 4°. Strychnin dissolved in red clare.

vapor to dry was 7.5 g. salt and div. in water. 4°. Strychnin dissolved in red clare.

Salt is well adapted for identification a XX col. (See 3.4).

Chlorine glycerin: 2°. 5 g. XX glycerin digested with H2O (pH 2) 8.55 g. Chlorine A and K

Chlorine glycerin: 2°. 5 g. XX glycerin digested with H2O (pH 2) 8.55 g. Chlorine A and K

Chlorine glycerin: 2°. 5 g. XX glycerin digested with H2O (pH 2) 8.55 g. Chlorine A and K

Chlorine glycerin: 2°. 5 g. XX glycerin digested with H2O (pH 2) 8.55 g. Chlorine A and K

Chlorine glycerin: 2°. 5 g. XX glycerin digested with H2O (pH 2) 8.55 g. Chlorine A and K

Chlorine glycerin: 2°. 5 g. XX glycerin digested with H2O (pH 2) 8.55 g. Chlorine A and K

Chlorine glycerin: 2°. 5 g. XX glycerin digested with H2O (pH 2) 8.55 g. Chlorine A and K

Chlorine glycerin: 2°. 5 g. XX glycerin digested with H2O (pH 2) 8.55 g. Chlorine A and K
The University of Chicago

42° The circonférie sur 5.5% glycérine glycinine or lactic acid made in a similar manner to those from 36°-41° last found to be very soluble in alcohol and water; only the glycerine could crystallize of the others found to be gums.

Lactose, 

43° N. S. as a method of work. As sugar curbed down much material.

44° A. galactose, mostly glucose, thereby able to be taken up 100%. Galactose 500 cc, how 750 cc, 750 cc, 500 cc, 500 cc, 750 cc. 70%; 95% alcohol and 200 gr. hydrochloric acid and set aside (p. 127). The 8th day, after 3 days induction XX first line; much show too physician; on 12th day found xx. On the day after 3 days induced XX first line; much show too physician; on 12th day found xx. One 9th day after 3 days induced XX first line; much show too physician; on 12th day found xx. The XX substance 8 times.

45° B. Galactose, 

Acetylation, 

46° Alkaline, 

Acetate, 

47° Analytical.
The oil left und in ether is prepared by 187.7 glyceric acid (see Ann 835, 317); it may however contain 98.7% glyceric acid. On letting it up in acetone, there remains acetone 835, 317 at 25 mm. 50% crude acids.

There is obviously much loss of material. 1/4% glyceric acid + 98.7% glyceric acid oxidized by Br₂ + H₂O (Knoevenagel). (Knoevenagel's method must be done in large quantities). 500 g. glyceric acid

Flyres Burnt + H₂O (see if any terephthionic is present): 500 g. glyceric acid, 500 g. H₂O

The reaction was done at 120°C for 2 mins. in a vessel with 3 incandescent lights. The reaction was continued until the mass was cast in 500 cc. of acetone. The mass was then filtered and washed with acetone. The terephthalic acid was then filtered and washed with acetone. The terephthalic acid was then filtered and washed with acetone. The terephthalic acid was then filtered and washed with acetone. The terephthalic acid was then filtered and washed with acetone. The terephthalic acid was then filtered and washed with acetone. The terephthalic acid was then filtered and washed with acetone. The terephthalic acid was then filtered and washed with acetone. The terephthalic acid was then filtered and washed with acetone.

150 g. Borax, 2% H₂SO₄, dissolved, heated R.T. in all 200 ml. of water. 500 g. of Ca(OH)₂ made 8% H₂SO₄ and dissolved, heated R.T. in all 200 ml. of water. 500 g. of Ca(OH)₂ made 8% H₂SO₄ and dissolved, heated R.T. in all 200 ml. of water. 500 g. of Ca(OH)₂ made 8% H₂SO₄ and dissolved, heated R.T. in all 200 ml. of water. 500 g. of Ca(OH)₂ made 8% H₂SO₄ and dissolved, heated R.T. in all 200 ml. of water.

The main cell main used up 500 g. of Ca(OH)₂ made 8% H₂SO₄ and dissolved, heated R.T. in all 200 ml. of water. The main cell main used up 500 g. of Ca(OH)₂ made 8% H₂SO₄ and dissolved, heated R.T. in all 200 ml. of water. The main cell main used up 500 g. of Ca(OH)₂ made 8% H₂SO₄ and dissolved, heated R.T. in all 200 ml. of water. The main cell main used up 500 g. of Ca(OH)₂ made 8% H₂SO₄ and dissolved, heated R.T. in all 200 ml. of water.

The residue in 1 liter was filtered by a stirrer. The residue in 1 liter was filtered by a stirrer. The residue in 1 liter was filtered by a stirrer. The residue in 1 liter was filtered by a stirrer. The residue in 1 liter was filtered by a stirrer.

A syrupy mixture and viscous that was then dissolved in acetone. The syrupy mixture and viscous that was then dissolved in acetone. The syrupy mixture and viscous that was then dissolved in acetone. The syrupy mixture and viscous that was then dissolved in acetone. The syrupy mixture and viscous that was then dissolved in acetone.

The syrupy mixture and viscous that was then dissolved in acetone. The syrupy mixture and viscous that was then dissolved in acetone. The syrupy mixture and viscous that was then dissolved in acetone. The syrupy mixture and viscous that was then dissolved in acetone.
The University of Chicago

0.8375 g acetyl salicylic acid was mixed with 40 ml of 95% alcohol. After 4 hours, the mixture was filtered through a large column of Celite. The precipitate was then dissolved in methanol and filtered through a fine filter. The filtrate was evaporated to dryness, and the residue was extracted with ethyl ether. The extract was then dried over sodium sulfate and filtered. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.

The solution was then treated with 10% sodium hydroxide solution. The precipitate was filtered off and washed with water. The filtrate was then evaporated to dryness and the residue was dissolved in chloroform.