July 25, 1929

My dear Mr. Edwards:

I wish to congratulate you and the Morrisville Board of Education on the plan of your essay contest, and I wish that the young man or young woman writing the essay on our University might find it possible to come here this autumn. In answer to your question I am glad to say that I do not see any particular way to improve your handling of the matter.

Cordially yours,

DAVID H. STEVENS

Associate Dean of Faculties

Mr. J. C. Edwards, Vice President
The Board of Education,
Morrisville, Missouri.
Morrisville, Missouri,
July 15, 1929.

President of University of Chicago,
Chicago, Illinois.

Dear Sir:

Our High School conducts two prize contests annually which we think are of interest. One contest is for the best essay on "Why Should I Attend a Certain College or University". The object is to have students of little means to realize that one may work their way through college and the list selected on which the essays are based are believed to offer such opportunities. A list of five or six colleges and universities are designated and the contest is open to Juniors and Seniors. There are three prizes offered. This year the 1st prize was won by [Name Redacted] and [Name Redacted], Missouri, was selected by the winner.

In 1927 the class consisted of fourteen and thirteen of the number entered college. In 1928 there were eleven members in the Senior class and six entered college. In the 1929 class there were twenty-one members and every one has expressed an intention to enter college in the Fall.

The other contest is on "The Federalist"; there are three prizes offered. The 1st prize ($35.00) was won this year by [Name Redacted], and I enclose a copy of the essay.

The purpose of offering prizes for the best essays on "The Federalist" is to encourage the study of the fundamental principles of our Government. Formerly "The Federalist" was used as a text book in the best colleges of the Country. Today the study of this great classic is not found in college or high school curriculums.

We trust you find the foregoing of interest and if so we shall be glad to have any suggestions.

Very truly,

[Signature]

Board of Education

B.J. Edwards, Supt. Sec
Dear Sir:

With regret I record that the present college can no longer continue in existence. The main reason of this is due to the fact that the college was established on the basis of a grant from the government, which has now been revoked. The college has been unable to find alternative sources of support and has therefore been forced to close.

I trust that the mention of alternative colleges for the past seven years may have been of some interest to you. The college has endeavored to maintain a high standard of education and has provided a valuable service to the community. It is with regret that I must inform you of its closure.

Yours truly,

[Signature]

[Name]

[Position]
WHY I WOULD GO TO CHICAGO UNIVERSITY TO TAKE A COURSE IN MATHEMATICS
WHY I WOULD GO TO CHICAGO UNIVERSITY TO TAKE A
COURSE IN MATHEMATICS
WHY I WOULD GO TO CHICAGO UNIVERSITY TO TAKE A COURSE IN MATHEMATICS

Chicago University is located in Chicago. The University grounds are on both sides of the Midway Plaisance between Washington and Jackson Parks, six miles south of the center of Chicago. All railway stations can be reached from the University grounds by electric cars, elevated trains, and the Illinois Central suburban service.

When a student is seeking for admission from an accredited secondary school, the principal of the school should mail the student’s application and also a statement of his high school record on a blank supplied by the University Examiner upon request. These applications should reach the University Examiner at least six months before the date for admission is desired. There should also be sent satisfactory evidence of adequate mentality, seriousness of purpose, intellectual interests and attainments, intellectual promise, and such personal characteristics as will make the person wishing to enter a desirable member of the college community. A health certificate is also required.

The required subjects for entrance are such as all first class high schools offer. The preparation of these subjects should cover a period of four years in a secondary school of high grade.

One can enter this school after finishing high school or after graduating from a four years' college if he desires.

The University of Chicago has twelve residence halls. Seven of these are for women, in one of which the young women can work and in that way pay part of their board. This is very beneficial for it gives those young ladies who stay there experience in housekeeping and teaches them how to adapt themselves to group life.

Rooms in the resident halls are for the most part single, but a few in each hall may be occupied by two students. Each room is furnished with study-table, chairs, bookcase, dresser, mirror, rug, bedstead, mattress, and bedding, with the exception that in Hitcock Hall occupants are required to furnish rugs, and in Drexel House occupants furnish bedding. Towels must be furnished by the students.

Six of the halls for women have separate dining rooms and parlors.

A University house is organized in each hall; each house has a head, appointed by the president of the University, and a house committee, elected by the members; also a house counselor, selected from the Faculties of the University by the members of the house. The membership of the house is determined by election, and each house is self governing under the general control of the University.
Why I Would Go to Chicago University to Take a Course in Mathematics

Chicago University is located in Chicago, at the northwest corner of the City. It is surrounded by fine residential homes, and its location on the shores of Lake Michigan makes it a beautiful place to live. The University is a large institution with over 20,000 students enrolled. It offers a wide range of courses, from mathematics to music, and from psychology to engineering.

To be admitted to the University, one must first apply for admission. This can be done by filling out an application form, which is available on the University's website. The application must be submitted by a certain date, which is usually in the fall. If the applicant is accepted, they will be notified by the end of the month.

Once accepted, the student will need to register for classes. This can be done online, and students can choose from a wide range of courses. Classes are held in small groups, and each professor is dedicated to teaching their students.

In summary, Chicago University is an excellent choice for students who are interested in mathematics. It offers a wide range of courses, and its location makes it a beautiful place to live. The University is well-respected, and its graduates are highly sought after by employers.
Few schools, if any other school, can boast of three museums. The Walker Museum contains the collection of fossils of the Department of Geology and various mineralogical, paleontological, and geological collections donated to or deposited in the museum.

The Julius Rosenwald Hall contains the lecture rooms, libraries, and laboratories of the departments of Geology and Geography and of the courses in Anthropology. The first floor of the building is devoted to museum purposes. A weather observatory, at present the best equipped in the United States, is maintained in Rosenwald Hall by the United States Weather Bureau. The facilities and records of the observatory are at the disposal of the University in connection with its work in meteorology and climatology.

The Haskell Oriental Museum contains exhibits illustrating the history and achievements of man in Egypt and Western Asia. Egyptian antiquities occupy the first floor and Asiatic antiquities the third. On the first floor, too, are the seminar rooms of the department of Oriental Languages and Literatures. The second floor is shared between study collections and the offices of the museum and of the Oriental Institute.

Seven laboratories give those studying sciences many advantages over scholars attending smaller schools.

The Kent Chemical Laboratory and the Ryerson Physical Laboratory contain rooms for special research, small laboratories for work of investigation, large laboratories for general instruction, lecture-rooms, class-rooms, library, museum, and offices.

The Hull Biological Laboratories are a group of four buildings devoted to the study of anatomical, botanical, and zoological sciences.

The Harward Taylor Ricketts Laboratory and Ricketts Laboratory South are devoted exclusively to work in Hygiene and Bacteriology.

New laboratories for physiology, physiological chemistry, and pharmacology offer ample facilities for study and research in these departments.

The Department of Pathology occupies a Laboratory in immediate association with the Billings Hospital, autopsy rooms, museums, research laboratories, class rooms; and there are other facilities which provide for the needs of work in this field.

The Psychological Laboratories occupy two buildings, one devoted to work in human psychology and one to the study of animal behavior.

The Home Economics Laboratories for food chemistry, nutrition, dietaries, textiles, costume design, and interior decoration are housed in Emmons Blaine Hall; the Institution Economics Laboratories are in Ida Noyes Hall and the men's commons; and the child health studies are made in the laboratory of the school of education.
The University of Texas at Austin has made significant contributions to the field of meteorology, particularly through the establishment of the Center for Meteorological Research. This center, located in the Maney Hall, is equipped with state-of-the-art facilities and is dedicated to advancing the understanding of meteorological processes.

The Center for Meteorological Research is housed in the McCombs School of Business building, which was designed to optimize energy efficiency and minimize environmental impact. The center's research focuses on various aspects of meteorology, including climate change, atmospheric chemistry, and the impacts of severe weather events.

In addition to its research efforts, the Center for Meteorological Research is also committed to education and outreach. It offers courses in meteorology to both undergraduate and graduate students, as well as continuing education programs for professionals in the field.

Furthermore, the center collaborates with other academic institutions and governmental agencies to promote scientific advancement and public safety. Its interdisciplinary approach allows for the integration of knowledge from various disciplines, leading to innovative solutions for complex meteorological challenges.

Overall, the Center for Meteorological Research plays a crucial role in advancing the field of meteorology, contributing to both scientific understanding and practical applications that benefit society at large.
Those students taking astronomy, especially advanced students, have special advantages at Yerkes Astronomical Observatory at Lake Geneva near Williams Bay, Wisconsin, as these students are allowed to spend most of their time here.

The libraries of the University include the General Library and the Departmental Libraries. The library contains seven hundred thousand volumes, eight thousand eight hundred forty of which are pure mathematics, and one thousand eight hundred ten mathematical physics. The General Library is a reference and circulatory library and is open to students in all departments of the University. Students who have matriculated and paid their library fee may take out at one time nine volumes from the General Library and others open to circulation.

The University owns one hundred acres of land in Chicago and has fifty-five buildings.

The University has two gymnasiums, one for women and one for men. It also has two large fields for outdoor exercise.

The faculty, without counting the assistants, numbers six hundred and seventy-eight.

The average expenses, exclusive of tuition, is two hundred and seventy-five dollars per quarter.

Undergraduates, as well as graduate students, can get aid from the University by fellowships and scholarships. The fellowships to graduate students are given to those majoring in or studying different branches of science. Graduate students may also get aid by part-time teaching. The scholarships are rewarded on merit and need.

The undergraduates are aided by six honor scholarships and by thirty-six endowed and other scholarships. There are seven prizes offered to undergraduates ranging in value from twenty-five dollars to two hundred and fifty dollars. Any of these are worth working for. Undergraduates also may be of service in the different departments and the library. The students may also do messenger service, service in the University choir, service in the University bands, service in the commons, temporary stenographic or clerical service for members of the faculty or administrative officers, and occasionally special service in the laboratories.

In addition to the scholarships, fellowships, and prizes already mentioned to help students, the University has an employment agency through which many kinds of work are found for students who are compelled to depend in whole or in part upon their own resources. Loan funds have been created by friends of the University through which loans are made to many students of worth and promise who need temporary aid. These helps make it so that anyone who wishes to attend this school may do so.

The University confers in the graduate schools of Arts, Literature, and Science the degree of Doctor of Philosophy, of Doctor of
The University of Chicago is one of the leading institutions of higher learning in the world. It is a private, non-sectarian, coeducational, research-oriented university, located in Chicago, Illinois. The University was founded in 1890 and was co-founded by John D. Rockefeller. The University of Chicago is known for its strong academic programs, particularly in the fields of economics, law, and business. The University is home to the University of Chicago Press, one of the largest academic publishing houses in the United States. The University-owned newspaper, The Chicago Maroon, is the oldest college newspaper in the United States and is published weekly. The University has been a leader in the development of new academic disciplines and has made significant contributions to fields such as economics, science, and medical research.
Medicine, and of Master of Arts and of Science; in the colleges of Arts, Literature and Sciences the degrees of Bachelor of Arts, of Science, and of Philosophy; in the Divinity school, the degrees of Doctor of Jurisprudence, of Doctor of Law, and of Bachelor of Laws; in the school of Education, the degrees of Bachelor of Arts, of Philosophy, and of Science in Education; in the school of Commerce and Administration, the degrees of Doctor of Philosophy and of Master of Arts, and of Bachelor of Philosophy; in the graduate school of social service administration, the degrees of Doctor of Philosophy and of Master of Arts.

Mathematics may at the option of the student be used as the principal department for the degree of Bachelor of Philosophy or Bachelor of Science.

The University of Chicago offers a very wide range of Mathematics. Some ninety different phases of Mathematics courses are offered. These courses in Mathematics are intended for those studying Mathematics as a part of a liberal education, for those expecting to apply mathematics in other sciences or in technology, for prospective teachers of Mathematics or other sciences in secondary schools, colleges, and universities, and for workers and investigators in the most advanced fields of mathematics.

For students who can attend the school in the summer quarter only, the courses are arranged so that they can get a wide range of mathematics during four summers.

There are two mathematical clubs in the University. The mathematical club meets fortnightly for the review of memoirs and books, and for the presentation of results of research. The club is conducted by the members of the faculties of mathematics and mathematical astronomy. Graduate students of the departments are expected to attend and otherwise to participate in the meetings of the club.

The Junior Mathematical Club holds its meetings fortnightly and is conducted by the graduate students of the departments of mathematics and of astronomy and astro-physics. It is open to undergraduates majoring in mathematics.

Chicago University offers several courses in the study of the New Testament that would be of benefit for any student to take some of these in addition to his major work. The New Testament Club holds meetings once in three weeks for the review of current literature and discussion of topics connected with the study of the New Testament.

Junior College students are required to attend chapel which, as everyone knows, should help them to lead better Christian lives.

Junior College students are also required to take physical culture, a course which is very beneficial to anyone, for it helps build up the body in a physical way.
The University of Chicago offers a wide range of mathematics courses and programs. The mathematics department is well regarded for its research and teaching, with a focus on advanced topics in mathematics. Students have the opportunity to explore a variety of courses, including courses in mathematics, computer science, and statistics. The department also offers a range of graduate programs, including a PhD in mathematics. This encourages students to pursue their academic interests and provides them with the opportunity to engage in original research.
I think I have now pointed out in a way why I would go to the Chicago University to take a course in Mathematics. I would have many advantages here and many ways that I could aid myself in going on with my education in this higher institution of learning. The many things that the University of Chicago has to work with give the student special advantages in his studies. For a student to do his or her best work, he or she needs good equipment, and this certainly can be had here in the University of Chicago.
I think I have now pointed out in a way why I want to take the Chicago University to take a course in mathematics. I want to have many mathematicians here and many more that I control and myself. When I write on my dissertation in the higher institution of learning, the name figures the University Chicago here to work with this student. The student secures mathematicians in the College. You are in charge of this student. He or she needs good equipment and this will - certainty can be had here in the University of Chicago.
March 22, 1929

Memorandum to: Dean Gale
Mr. Woodward

In talking over the history of the Department of Astronomy and Astrophysics with Mr. Bliss, I told him that Mr. Frost's recommendations had included nothing regarding the men on the Quadrangles. My private question now is whether the Department should not be made either the special care of the Chairman in related fields, or be broken up. It seems to me entirely feasible that MacMillan, Berty, and Laves should be added to the Department of Mathematics, possibly giving MacMillan the understanding that he is to care for the courses of the transferred men.

Very t.

DAVID H. STEVENS
Assistant to the President
Recommendation for New Gate

In furtherance of the plan of the Department of

I recommend that the proposal made by Mr. T. J. Forde for the

construction of a new gate to be erected on the departmental

property, be accepted as a means of securing the necessary

security at the entrance to the departmental premises.

This proposal has the approval of the departmental

authority and is in accordance with the policy of the

department in providing adequate security for its

premises.

DAVID H. STEVENS

Assistant to the Preisdent
May 20, 1929

My dear Mr. Bliss:

I am glad to learn that you are willing to become a member of the Editorial Board of the University of Chicago Science Series. I do not know whether there should be a more rapid development of the Series or not and should be glad to have a Committee consider the question if you think a continuation of the present policy inadvisable.

In case the work becomes too onerous for you, I shall be quite willing to relieve you.

It is quite satisfactory to me to have Mr. Graves act as Chairman of the Department during the Summer Quarter. I am appointing him.

Yours cordially,

FREDERIC WOODWARD

Acting President

FWk

Mr. Gilbert A. Bliss
Department of Mathematics
Faculty Exchange
Mr. President,

I am glad to learn that you are willing to become a member of the Executive Board of the University of Chicago. I am not sure whether there is any specific development of the Board to which you refer, but I think a committee might be formed to have a committee consider the question of your participation.

If you think a committee might be formed to have a committee consider the question, I think it will be agreeable to Mr. Green.

I am quite sorry to have to write you.

Your sincerely,

Fredric Woodward

Vice-President
May 14, 1929

Professor F. C. Woodward
Faculty Exchange

Dear President Woodward:

In your letter of April 20 you asked me to join Mr. Barrows and Mr. Kyes on the Editorial Board of the University of Chicago Science Series. I have been talking with them about it and should be glad to do so provided that you are satisfied with the policies followed in editing the Series in the past. It would be hard for me to take an active part in a more rapid development.

Someone should be designated as Acting Chairman of our Department during the Summer Quarter. I have thought of Mr. Graves for that duty and find that he is willing to undertake it. If you will give me your approval we will have it so understood.

Yours sincerely,

[Signature]

GAB:K
Dear Professor W. C. MacFarlane,

In your letter of April 20

you asked me to join the Northern and Texas, navy on

the Air Technical Board of the University of Chicago.

I have been working with the Air Force and

am not now in the Navy. I am willing to accept

offering the position in the Board. I would like to

take on an active part in a more

development.

Please arrange for my new position at

appointment of the Department during the summer quarter.

I have been in touch with Mr. Green for staff work and have

sent you a written copy of my letter of introduction. If you will give

me your approval we will proceed to arrangement.

Yours sincerely,

[Signature]
April 20, 1929

My dear Mr. Bliss:

Mr. Barrows informs me that Mr. E. H. Moore has withdrawn from the Editorial Board of the University of Chicago Science Series. Mr. Barrows and Dr. Kyes recommend that you be appointed in Professor Moore's place and I am very glad to follow their recommendation. I hope very much that you will find it possible to accept the appointment.

Yours cordially

FREDERIC WOODWARD

Acting President

Mr. Gilbert A. Bliss
Faculty Exchange

cc Mr. H. H. Barrows
The great Mr. Hitler

Mr. Harriman informs me that Mr.

E. H. Bissell and Mr. Mitchell from the United States

of the University of ChicagoScience Group.

You have my hearty recommendations for your appointment

in President Rockefeller's place and I hope very much that

you will find it possible to accept the appointment.

Your sincerely,

Frederic Woodward

Acting President

Mr. Griffith A. Lloyd

Assistant Secretary

Mr. H. Harriman
The University of Chicago
Department of Geography

April 16, 1929

Acting President Frederic Woodward,
Faculty Exchange.

Dear Mr. Woodward:

A vacancy exists on the Editorial Board of the University of Chicago Science Series in consequence of the withdrawal of Mr. E. H. Moore. As the remaining members of the Board, we venture to recommend that Gilbert A. Bliss be requested to serve on it. We believe that he would be an effective member and that his appointment would be gratifying to Mr. Moore, who has served on the Board since its establishment.

Very sincerely yours,

[Signature]

[Redacted: Signature]
May 16, 1957

Dear Mr. Scandinavian:

I extend thanks for the Editorial Board of The University of Chicago Science Center to announce receipt of the recommendation made by the Editorial Board of the Journal of the History of Science that Professor F. Koelsch be appointed as an Associate Professor of History. We believe that his appointment would be an addition to the Editorial Board of the Journal of the History of Science. The Editorial Board appreciates your support in this matter.

Very sincerely yours,

[Signature]

[Handwritten note]
Members of the Association of Doctors of Philosophy of the University of Chicago

Dear Colleagues:

Another academic year is fast coming to a close. The June Convocation is on the 12th and the Alumni homecoming is on Saturday, June 9. All alumni groups are to hold their celebrations on that day.

President Mason has again extended the University's welcome to the Doctors of Philosophy and invites you all to a complimentary luncheon at the Quadrangle Club at twelve o'clock, June 9. President Mason will be there to extend the greetings of the University to you all, and Professor J. Paul Goode, who is retiring after twenty-five years of active service in the Department of Geography, will give a short address.

The University has made notable steps forward during the past year. You will want to see the new buildings and to meet the Faculty and alumni of your departments. The departmental social gatherings will be held as last year during Saturday afternoon at times and places to be announced.

The Alumni Council has also taken an important forward step in securing the services of Mr. Charlton Tisdel Beck as Alumni Secretary, and great things may be expected in alumni affairs during the next year or two.

Please use the inclosed card to signify your intention of being with us on June 9, but return the card in any case with some word about yourself or other Doctors in your vicinity.

Yours very sincerely,

[Signature]

Secretary
April 15, 1928.

My dear Mr. Slaught:

I shall be glad to have the report of expense for the President's Luncheon to the visiting Doctors of Philosophy whenever convenient. You may rest assured that President Mason wishes the invitations to go out in the usual form, and he wishes that the bill be sent in to us for payment from the President's Fund.

Very truly yours,

David H. Stevens
Assistant to the President.

Mr. H. E. Slaught,
Department of Mathematics,
Faculty Exchange.
April 1st 1928

To the Great Meteorologists:

I am writing to lend my support to the establishment of a Meteorological Institute at the University of London. I am writing in my capacity as a Meteorologist and as a member of the Royal Meteorological Society. I believe that the establishment of such an Institute would be a valuable contribution to the advancement of meteorology.

Yours faithfully,

[Signature]

Deputy of the President

[Handwritten note:]

[Signature]

Deputy of the President
April 9, 1928

Professor David H. Stevens
The President's Office
Faculty Exchange

My dear Mr. Stevens:

Before long I shall be sending my annual letter as secretary to the members of the Association of Doctors of Philosophy of the University of Chicago. I am assuming that the University will continue its annual tribute to this organization in the form of a complimentary luncheon at the time of the June convocation. However, I should like to have official confirmation before going ahead with the plans.

Yours very sincerely,

H. E. Slaught
Dear Dean Woodward:

I had a conversation with you this morning over the telephone concerning a course in Trigonometry which Professor Laves was listed to give during the Spring Quarter. He has recently planned to be away, and we were trying to make suitable provision for the course. Since speaking with you, I find that one of our Fellows who has already done some service in return for his fellowship is willing to undertake this extra duty on account of the experience which it will give him. He is a very good man, and I think will teach the course well, so that I shall not need to urge you further in the matter.

Yours sincerely,

G. A. Bliss

GAE/KF
Dear [Name],

I feel a connection with you... I am trying to make this notification that I have been working toward a cause that I am passionate about and that you have recently become aware of. I am writing to you to make sure that you are aware of the situation.

Since we last spoke, I... I am writing to you with this information.

I hope you will find this information useful... I am writing to you to make sure you are aware of the situation.

Thank you.

[Signature]
July 13, 1927

President Max Mason
University of Chicago
Faculty Exchange

Dear Max:

I have just received a letter from Tomlinson Fort who is engaged in securing sustaining members for the American Mathematical Society. He desires the University of Chicago to take such a membership, the dues to be $100.00 per year. You perhaps remember that I spoke to you about this earlier in the spring and you agreed, with some reluctance, to approve such a membership for the University of Chicago. I believe it would be a good thing to do. A number of the other leading universities are already on the list. If you are of the same opinion as before will you kindly let me know so that I can send a formal application to Professor Fort.

Yours sincerely,

[Signature]

GAB: LH
Dear Professor:

I have just received a letter from...

Sincerely,

[Signature]
March 28, 1927

To The Vice President

My dear Mr. Woodward,

The bearer, Miss Lulu Hofmann of Springfield, Ohio, is a Doctor of Philosophy of the University of Zurich. She is under appointment to the staff of Mathematics at Columbia University and requests guest privileges in Mathematics here for spring and summer quarters of 1927. I strongly recommend that she be given those privileges.

Yours faithfully, E.A. Moore
E. E. Kinsley

The University of Chicago

Department of Biochemistry

Vieve, 28, 1963

To the Vice President

With best wishes for the pleasing

The President, Alumni Home Office

The President of the University, Yale Alumni Association

President of the University, Yale Alumni Association

To the people of the United States

We would like to express our appreciation for the outstanding

[Signature]

Secretary, 3rd Floor
To The President of the University
The Vice-President and Dean of Faculties
The Dean of the Ogden Graduate School
The Dean of the Colleges of Art, Literature and Science

My dear Mr. Mason, Mr. Woodward, Mr. Gale and Mr. Boucher:

Kindly permit me to write you in brief detail concerning the graduate and undergraduate interests of the Department of Mathematics, in particular in connection with the propositions we are making relative to the year 1927-28.

A) As to the Graduate Interests

About 4 years ago we suffered a severe blow by the loss of E. J. Wilczynski on account of severe and permanent illness. Mr. Wilczynski was in charge of the geometrical side of our graduate work. In view of Wilczynski's increasing weakness we fortunately had already called to an Assistant Professorship E. P. Lane, who was recommended by Wilczynski as the strongest doctor he had sent out. Mr. Lane has been succeeding admirably in his direction of prospective doctors and masters, especially in Wilczynski's particular domain of projective differential geometry, --although of course Lane's standing as an investigator is far from being that of Wilczynski. In projective differential geometry Wilczynski's school in this country and the Italian school are at present the principal foci of progress. Mr. Lane is spending the year 1926-27 as International Research Fellow in Italy, and on his return he will be able to represent this field of projective differential geometry from a still wider view point than formerly.

In the general domain of differential geometry the Italians at present occupy the leading position in higher algebraic geometry. This geometric field will be represented here by Mrs. Logadon; she devoted herself to work in this field during her International Research Fellowship for the year 1925-26 spent in Italy.

Accordingly we hope that the domain of geometry will be hereafter represented well by the conjoint work of Mr. Lane and Mrs. Logadon.

In view of the very great expansion of our graduate registration we need to strengthen our staff in the various lines of research already developed here and moreover, as the possibility may present itself, in various lines not yet
developed here. Thus, to replace Associate Professor J. W. A. Young, we have secured as Assistant Professor L. M. Graves and R. W. Barnard. These men divide their time approximately equally between graduate and undergraduate work. In graduate work, Mr. Graves assists Mr. Bliss in analysis and me in general analysis, while Mr. Barnard assists Mr. Dickson in algebra and me in general analysis.

I should have stated that the time of Mr. Lane and Mrs. Logsdon is divided between graduate and undergraduate work.

E) As to the Undergraduate Interests

As between the graduate and the undergraduate divisions of the University, I suppose that there is general agreement to the effect that the primary position is occupied by the graduate division, and that furthermore, the best interests of the University require the recognition and development of a higher ideal for the undergraduate division, an ideal higher than we had hitherto, at least in many departments.

My colleagues in mathematics share with me the desire to improve our undergraduate work, in accordance with the various plans which have been developed during last one or two quarters.

Mrs. Logsdon has resigned her position as a Dean in the Colleges, in order to have charge as supervisor of our Junior College classes in mathematics, on the one hand, and, of those students, at present numbering about 40, who major in mathematics. Mrs. Logsdon achieved high success as a Dean and she will succeed similarly in this supervision of classes and of majoring students. I recommended early in March that her salary after this year be $3500, that is, $800 beyond the present $2700, instead of the $1000 for her Deanship beyond the $2700. Mrs. Logsdon will do full teaching work, in addition to the supervision.

We have been accustomed to assign to every Fellow major of Junior College teaching and to provide instructors for the remaining Junior College majors by the selection from quarter to quarter of temporary instructors from amongst
our body of advanced graduate students.

Ideally we should have regular appointees as instructors of the Junior College courses, making use otherwise of the services of our Fellows, and there are various ways in which we may use the Fellows to the distinct advantage of the Department.

For 1927-28 I recommended strongly that we secure as instructor, to teach eight majors, Mr. F. R. Bamforth at a salary of $2400; and today I am strongly recommending that we appoint Mr. T. F. Cope as instructor to give 4 majors for $1000 and to receive free tuition for graduate courses taken during 4 quarters. Both these men have had successful experience for several years; they are of pleasing personality and give good promise of success in mathematical research; Mr. Bamforth will be ready for his doctorate this present year and Mr. Cope will be ready sometime next year. We all earnestly hope that it will be possible to make these appointments, even though it is rather late for us to be submitting the recommendations.

Our work as planned for 1927-28 October-June carries at present 17 majors with unassigned instructors, that is, Bamforth's eight and Cope's four and a residual five with unassigned instructors. We shall be able from amongst the Fellows to provide instruction for 4 and possibly for 5 of this residual five, by the choice of Fellows who have had successful experience.

C) As to Provision for Salaries of Mr. Bamforth and Mr. Cope

The salaries of $2400 + $1000 = $3400 for 8 + 4 = 12 majors of instruction during the year Oct. 1927-June 1928 require, in addition to the budget item of $1320 for supply instruction, the provision of $2080. This amount, as I look at matters, should be considered as secureable from Mr. Barnardo salary of $3000 for each of the two years beginning Oct. 1926.

Mr. Barnard served only the first quarter of his first year, the autumn quarter of 1926. He is for the calendar year 1927 on leave as National Research Fellow in Mathematics, continuing his investigation initiated here at Princeton University where the research activities are most closely comparable with Mr. Barnard's lines of investigation; the conditions of the national research fellowships are requiring that the Fellows shall pursue their work elsewhere than at the respective universities where they initiated their work, in order that their research horizons may thereby be widened. Thus during our academic financial year July 1927
through June 1928 Mr. Barnard will serve two quarters January-
June 1928. During his first year he served only the
autumn quarter. Accordingly Mr. Barnard for the two
years will receive only the salary for one year of service.
I hope that the salary of $3000 for the other year, his year
of absence as National Research Fellow, may to the extent of
$2000 be considered as in our budget for the financial year
1927-28, as representing his salary for the two quarters'
service July-December 1927 not rendered by him, and accordingly
as being available for all except $80 of the $2080 necessary,
in addition to the $1320 in our budget for supply instruction,
to provide the $3400 salary for Messrs. Bamforth and Cope.

In conclusion I wish to express again the desire and
the purpose of the Department of Mathematics to cooperate fully
in the improvement of Junior College instruction, and the hope
that to this end our recommendations of Messrs. Bamforth and
Cope for appointment as instructors of mathematics may meet
with your approval.

Yours faithfully,

E. H. Moore

E. H. Moore
Dear Sir,

I have been informed that your department is facing a reduction in funding for the upcoming year. In light of this, I am writing to express my concern and to request your consideration of the following matters.

Firstly, the recent budget cuts have had a direct impact on our ability to maintain the quality of education and research within the department. We are at risk of losing essential staff and resources that are crucial to our academic mission.

Secondly, the reduction in funding will undoubtedly affect our ability to engage in international cooperation and exchange programs, which are essential for fostering a global perspective among our students and faculty.

I urge you to consider these implications carefully and to advocate for our needs within the broader university administration. We are committed to finding creative solutions that can mitigate the impact of these cuts on our academic programs and the well-being of our students.

Thank you for your attention to this matter.

Yours sincerely,

[Signature]

[Name]

[Position]
January 11, 1927

Dear Jackson:

I cannot tell you how disappointed I am that you cannot see your way to coming down. I do not wish to appear unduly persistent, but I am still hoping that nothing need happen before we have an opportunity to talk over the situation, and am writing this just to thank you for the careful consideration you gave the matter and to say, that I am sorry to have caused you so much trouble. I think there is no period of time more unhappily spent than in making a decision on such questions.

Perhaps you may adopt a modified Couse formula, and by repeating every evening, "way by day in every way I am becoming more anxious to go to Chicago", it may be possible for us to open the subject again.

Anyway, good luck to you and the best of good years.

Sincerely yours,

President.

Professor Dunham Jackson,
Department of Mathematics,
University of Minnesota,
Minneapolis, Minnesota.

M.I.C
Dear [Name],

I cannot tell you how much I appreciate your kind words. I feel like I cannot express my gratitude enough. I am so thankful for your support.

With regards,

[Signature]
December 30, 1926

President Max Mason,
University of Chicago,
Chicago, Ill.

Dear Mr. Mason:

Since I wrote to you a week ago I have talked things over again at length with Bliss, and I still find that the obstacles to my leaving Minneapolis are inherent in my personal situation and responsibilities to such an extent that I can not see any way around them. I congratulate you and the Department of Mathematics on the new developments that are in prospect, and am enduringly grateful for the confidence that you have placed in me.

With best wishes for the New Year.

I am

Sincerely yours,

[Signature]
ALDINE HOTEL
79 Vanbrugh Street
Chester

Dear Mr. Plumer,

I trust this letter finds you well and in good health. I have been thinking about the possibility of meeting with you to discuss the progress of the project we discussed in the past. I believe it would be beneficial to have a meeting to update you on the current status and to discuss any new ideas or suggestions that may arise.

I would be grateful if you could let me know your availability for a meeting. I look forward to hearing from you soon.

Yours sincerely,

[Signature]
December 23, 1926

Dear Mr. Schweitzer:

Thank you very much for your efforts in behalf of the mathematics situation.

I was glad to receive your letter of December 22 enclosing a photostatic copy of your researches. I think your suggestion is a very good one. The productive work in mathematics by men who received their training at the University of Chicago makes a very inspiring story and I feel that there is no department which has done more than mathematics at the University.

We are now in the process of formulating means of sending information to people who are or may be interested in the real work of the University and I shall see to it that the story of mathematics at the University of Chicago is, at the proper time, presented to them.

Cordially yours,

President.

Mr. Arthur R. Schweitzer,
452 Oakdale Avenue,
Chicago, Illinois.

MM.C
December 30, 1936

Dear Mr. Secretary:

Thank you very much for your efforts to facilitate
of the presentation of your letter of December 23
I am glad to receive your letter of December 23.
I am copying a portion of your letter to another
with your suggestion to insert the above.

The work in connection with the University of Cape
may I also point out to you that it is not

which have gone on in the connection with the
which you mentioned to me in your letter of

I am very glad to hear of the progress of the
I am very glad to hear of the progress of the

I am very glad to hear of the progress of the

to whom

Yours truly,

Respectfully,

Mr. A. A. Secretary

G. C.

G. C.

G. C.

Poggendorff, Biogr.-lit. Handwörterbuch.
December 22, 1926

Professor Max Mason,
President, The University of Chicago,
Chicago.
Dear Sir:

I am enclosing a photostatic copy of my principal researches as taken from Poggendorff's Biographisch-literarisches Handwörterbuch, recently published. I thought it might be found possible to file it with my academic record at the University, which goes back to 1896 and shows that my entire elementary mathematical instruction was obtained at the University of Chicago.

On the occasion of the endowment of a group of mathematics buildings at the University, I would like to suggest that the research attainments of the doctors in mathematics be given publicity in some way. It seems to me that universities in general are inclined to be backward in recognizing the achievements of their own graduates. The preeminence of the mathematics department of the University of Chicago in its field does not seem to be as well known as it should be.

Yours very truly,

Arthur R. Schweitzer
Dear Mr. [Name],

I am applying a postgraduate work at the University.

Respectfully,

[Name]
President Max Mason,
University of Chicago,
Chicago, Ill.

Dear Mr. Mason:

Your letter of December 21 came at the very moment when I was about to write you, as I had written to Bliss by an earlier mail, that I had reluctantly come to the conclusion that it was not for me to profit by the magnificent opportunity which you are creating at Chicago. As I explained to him in some detail, the decision came not from any lack of appreciation of the scientific possibilities, nor from any dissatisfaction with the material prospects, but for personal reasons beyond the control of anybody concerned. Although I am so involved in various ways with the meetings in Philadelphia that it will be necessary for me to spend the entire week there, and impossible for me to stop in Chicago as I had hoped to do, I expect to see Bliss at the meetings, and to talk over the whole situation with him again. Meanwhile may I express my gratitude for the generous interest that you have taken in my case, and for your letters of information and encouragement.

With most cordial greetings, I am

Sincerely yours,

[Signature]
December 20, 1926

Dear Professor [Name],

I am in receipt of your letter of December 10th, and I am glad to hear from you. I am enclosing a copy of my recent speech, which I hope you will find of interest.

I have been at the University of Chicago for several years now, and I am very pleased with the work being done there. I believe that the University is one of the leading centers of learning in the country, and I am proud to be associated with it.

I am also pleased to hear that you are planning to visit Chicago soon. I hope you will have the opportunity to see some of the many interesting sites in the city.

I will be happy to meet with you when you arrive, and I am looking forward to hearing about your research and your plans for the future.

Yours sincerely,

[Your Name]
December 21, 1936

My dear Jackson:

I do not intend to deluge you with letters nor to urge you to a decision more rapid than should be the case. I mentioned in a recent letter that I had some assurances of a most important development for our work. I think this matter has so much bearing on your decision that if you are at all tending to the conclusion that your future does not lie at the University of Chicago, I earnestly suggest that you hold that decision and come again to Chicago to discuss the matter.

The matters I speak of are too intimate to place in a letter but I should be very glad to talk with you with complete frankness about the situation.

Cordially yours,

President.

Professor Dunham Jackson,
Department of Mathematics,
University of Minnesota,
Minneapolis, Minnesota.

MM.C
December 1922

To: Dear Mr. Johnson

I am not inclined to believe your letter of December 1922, which I recently received, in which you mentioned a recent development of a certain significance. I think it is important to note that you have not yet clarified the importance of a recent development to which you referred in your letter of December 1922. I am not aware of any new developments since that date.

Sincerely yours,

[Signature]

Postscript

[Department of Finance]

[Department of Agriculture]

[Department of Labor]

Washington, D.C.
December 15, 1926

My dear Jackson:

When I spoke to you I referred to the fact that the quarters were cramped for the Department of Mathematics, but that I hoped that we were to have relief in the not distant future. I am writing this to tell you that we are practically assured of an addition to Ryerson which would give ample quarters for the graduate work in research in Mathematics. In fact I am very happy over the development which means that we shall be able to increase our performance much more rapidly than I had even hoped at the time you were here. Please treat this as confidential, but I believe it of sufficient importance to pass it on to you, I hope you are going to be with us.

Cordially yours,

Max Mason

President

[Handwritten note: Donald Jackson]

Professor Donald Jackson
Department of Mathematics
University of Minnesota
Minneapolis, Minnesota

MNOL
December 2, 1936

Dear Jackson:

I am writing this by way of apology for the bombardment which by virtue of lack of adequate time I was forced to subject you to on Friday. I was more than delighted to learn of the interest that you have had in the broad aspects of the work we have under discussion. I would never take the responsibility of urging you to take on this work if I was not sure of the future. I have been through several periods myself of indecision in regard to changes, and I honestly feel that there is a large overestimation of present conditions intending to make a decision to remain in the old environment. One gets so tired of thinking of the problem that the thought of novelty and change becomes distasteful. I hope you will not let this natural feeling influence you unduly. If you decide to come, it will be to a fine community of fellow associates and inspiring program of research which is to be supported on a scale never before known in America. But most of all, I want you to feel that you will come among friends, and I am sure that Mrs. Jackson just feel the same. I hope very much that you are going to make the decision in the big way.

Cordially yours,

Max Mason

President.

Professor Dunham Jackson
Department of Mathematics
University of Minnesota
Minneapolis, Minnesota

CC Dean Gale
October 15, 1928

My dear Mr. Miller:

We thank you very much for your letter of October 12 announcing the award to Dr. Lincoln LaPaz of the National Research Council Fellowship in the Department of Mathematics for a period of twelve months under the supervision of Professor G. A. Bliss.

In accordance with our custom we make official appointment of such Fellows to the staff of the University and we shall be glad to extend all possible facilities and courtesies to Dr. Harris.

Yours cordially

FREDERIC WOODWARD

Acting President

Mr. Dayton C. Miller
National Research Council
B and 21st Streets
Washington D.C.
OCTOBER 15, 1938

Mr. George Miller:

We thank you very much for your letter of October 10.

The Secretary of the Permanent Committee of the Department of the Interior has forwarded you a copy of the report made by the chairman of the committee named by the Secretary of the Interior at the request of the President of this country.

Yours cordially,

Alfred S. Woodrow

Assistant Secretary

Mr. George Miller

Secretary of the Interior

NATIONAL RECREATION COUNCIL

Exhibiting Council

OCTOBER 15, 1938
NATIONAL RESEARCH COUNCIL
Established in 1916 by the National Academy of Sciences
under its Congressional Charter and organized with the cooperation of the
National Scientific and Technical Societies of the United States

NATIONAL RESEARCH FELLOWSHIPS
IN PHYSICS, CHEMISTRY AND MATHEMATICS
B & 21st Streets, Washington, D. C.

October 12, 1928

My dear President Woodward:

We are informed that Dr. Lincoln La Paz, who has been awarded a National Research Fellowship in Mathematics for a period of twelve months, beginning on or about October 10, 1928, to enable him to conduct researches on the subject: Inverse Problems of the Calculus of Variations, wishes to conduct his researches in the Department of Mathematics at your institution, and that he has already consulted with Professor G. A. Bliss as to the convenience and suitability of such a procedure.

It is hoped that this arrangement will meet with your approval, and the Board will be very appreciative of any privileges and courtesies which you may extend to Dr. La Paz during the tenure of his Fellowship.

We are also sending a copy of this letter to Professor Bliss.

Yours sincerely,

Dayton C. Miller, Secretary

President Frederic Woodward,
University of Chicago,
Chicago, Illinois
MATHEMATICS AT PRINCETON UNIVERSITY

Extension of the department of mathematics of Princeton University, with the object of building up a tradition similar to that held by the Mathematical Institute of Göttingen, Germany, is recommended in a report just made public by the Princeton Fund. The report says Princeton has played a leading role in the advancement of mathematics in this country since the end of the nineteenth century and has the beginnings of what may become a brilliant mathematical tradition.

"For many years there have been frequent complaints that there is no school of applied mathematics in the United States," according to the report. No serious attempt, however, has been made to establish such a school in the proper manner, that is, by developing tendencies which have set spontaneously in this direction. There is now opportunity at Princeton to make such a development.

The statement alludes to the mathematical tradition of the Göttingen Institute, which is said to have been built up by a group of men of all ages, who have been working together so that necessary replacements have been made gradually without interrupting the continuity of the personnel.

The Princeton Fund states that a similar history could be realized at Princeton "if the opportunity which has come to the university is assured prompt and full realization."

The Princeton Fund cites as means to this realization the following: Endowment for research professorships; increase of personnel with schedules compatible with better teaching and more research; a department research fund to meet changing conditions; a visiting professorship; a group of offices and other rooms for mathematical work, both undergraduate and advanced; continued financial support for the "Annals of Mathematics" which has been published for the last fifteen years by the Princeton department of mathematics, and a number of graduate scholarships.

Dear Max—Don't hesitate to tell me that you read "Science" and for me to "lay off"—Mrs. 9/15.
2:30 P.M.—General Meeting, Philadelphia Municipal Hall Round.

Address of Welcome:
W. P. Tarrance, chairman of the General Local Com-
mittee.
John Pratt, dean of Farnsworth School, University of
Pennsylvania.

Response:
James E. Smith, president, American Chemical So-
ociety.

Almones:
Edward N. Shriver, "The Development of Chem-
ical Industry in Italy."
Irvin De Puy, "The Drug Industry, Foreman
of What!"
Nate Reynolds, "The Science Modern of Marcello Bor-
teschi."

2:30 P.M.—Entertainment, Reception, and Dance—
Mike Clancy, Board Street above Vine.

36 tanks, 105 square feet of glass and no reserve tanks.

The permanent exhibition tanks will be about equal-
divided between fresh and salt water. In addi-
tion there will be a small hatchery for exhibition
purposes only and a large hatchery for actual hatch-
ing as well as a balanced aquarium room of about 60
feet in diameter. In this room will be exhibited
representatives of the small fish of the world.

Five separate systems of water are planned. One
will be a natural fresh water system with 40 tanks
in which will be exhibited native fishes of Illinois
and surrounding states and other fishes as are found
in water of this nature.

An artificially refrigerated water system of 12 tanks
will be used for showing facet, suckers and other cold-
water fish. A heated fresh water system of 11 tanks
will be used for tropical fresh water fish.

Two systems of salt water will be installed, one
refrigerated and the other heated, the former to have
25 tanks and the latter 43 tanks. In the heated
October 8, 1926

To the President of the University
Vice-President and Dean of Faculties
Dean of the Ogden Graduate School

My dear Messrs. Mason, Woodward and Gale,

I am sending the enclosures prepared in response to the circular of September 29, from Vice-President Woodward, to all of you, with the thought that possibly this procedure may facilitate later conferences.

Yours faithfully,

Eliakim H. Moore

EHM/LH
October 9, 1940

To the President of the University
Vice-President and Dean of Faculties
Dean of the College Graduate School

We feel honored to receive your letter...

Yours confidentially,

[Signature]

H. E. Moore
<table>
<thead>
<tr>
<th>Names</th>
<th>Autumn 1926</th>
<th>Winter 1927</th>
<th>Spring 1927</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore, Eliakim H.</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Slaught, Herbert E.</td>
<td>V</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Dickson, Leonard E.</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Bliss, Gilbert A</td>
<td>*</td>
<td>*</td>
<td>V</td>
</tr>
<tr>
<td>Lunn, Arthur C.</td>
<td>*</td>
<td>*</td>
<td>V</td>
</tr>
<tr>
<td>Lane, Ernest P.</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Logsdon, Mayme I.</td>
<td>V</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Graves, Lawrence M.</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Barnard, Raymond W.</td>
<td>*</td>
<td>V</td>
<td>V</td>
</tr>
</tbody>
</table>
Tentative Schedule of Residence of Staff of Department of Mathematics

<table>
<thead>
<tr>
<th>Names</th>
<th>Summer '27</th>
<th>Autumn 1927</th>
<th>Winter 1928</th>
<th>Spring 1928</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Term</td>
<td>2nd Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, Eliakim H.</td>
<td>V</td>
<td>V</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Slaught, Herbert E.</td>
<td>*</td>
<td>*</td>
<td>V</td>
<td>*</td>
</tr>
<tr>
<td>Dickson, Leonard E.</td>
<td>V</td>
<td>V</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Bliss, Gilbert A.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Lunn, Arthur C.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Lane, Ernest P.</td>
<td>V</td>
<td>V</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Logsdon, Mayne I.</td>
<td>*</td>
<td>*</td>
<td>V</td>
<td>*</td>
</tr>
<tr>
<td>Graves, Lawrence M.</td>
<td>V</td>
<td>V</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Barnard, Raymond W.</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>*</td>
</tr>
</tbody>
</table>
To The Vice-President and Dean of the Faculties
Faculty Exchange

My dear Mr. Woodward:

You doubtless know that for some years the University has been granting University Guest privileges to Doctors of Philosophy of sister institutions who desire to visit for several weeks or a term or a quarter our Graduate Schools, not with the thought of working towards a degree here. This policy is an excellent one, it seems to me, in that it wins a wider circle of friends and informed appreciators of our University in its peculiar sphere of activity, the Graduate School. Accordingly I venture to express the hope that this policy may be followed in the future.

I am led to think of this matter in view of a letter recently received from Dr. Mary G. Haseman, 433 Natural History Building, The University of Illinois, Urbana, who wishes guest privileges for the summer quarter, 1926. Miss Haseman is of the Mathematics Staff at the University of Illinois. I should be grateful if you see fit to send her a University Guest card.

Faithfully yours,

E.H.M./KF

signature
TO THE UNIVERSITY AND BOARD OF THE REGISTRATION

REGULAR EXAMINERS

The Board of Regular Examiners

June 6, 1926

Mr. John Smith

The University has been granted the privilege of holding a committee to examine the work done by students in the Engineering Department. The committee will consist of three professors, one from each of the three divisions of Engineering. The work will be examined on the following points:

1. The student's ability to solve problems in the field of Engineering.
2. The student's understanding of the fundamental principles of Engineering.
3. The student's ability to apply the principles learned in practice.

The committee will submit its report to the Board, and the Board will then make its decision regarding the student's eligibility for graduation. The decision of the Board shall be final.

John W. Jones
Chairman, Board of Regular Examiners

[Signature]
May 11, 1926

Professor E. H. Moore
Department of Mathematics

My dear Mr. Moore:

Receipt of your letter of May 3, relating to University guest privileges is acknowledged.

A guest card will be sent at once to Dr. Mary G. Haseman of the University of Illinois.

I quite agree with you that the policy of extending this privilege is a wise one and you may be assured that it will be followed by the new administration.

Yours sincerely,

Vice-President

FCW•L
May 11, 1926

My dear Dr. Haseman:

At the request of Professor E. H. Moore I am sending to you herewith a guest card for the Summer Quarter 1926. It is a pleasure to extend this privilege to you and if I can be of any further service I hope you will let me know.

Yours sincerely,

Vice-President

Dr. Mary G. Haseman
435 Natural History Building
The University of Illinois
Urbana, Illinois

FCW*L
President Max Mason,
The University of Chicago,
Chicago, Illinois.

April 15, 1926.

Dear Max:

I have recently seen a copy of Professor Moore's letter of some ten days ago to you, and have talked further with him and Dickson. The program which he outlines in the letter is one which he and Dickson and I have been discussing rather thoroughly since our failure to persuade Bell, and I think that it represents well our impressions of the needs of the Department for some time to come. Professor Moore was evidently desirous of laying the whole situation before you, and perhaps did not make the salient features of the program stand out as he might have done. I should like to make the following comments.

(1) It seems to me that the most important of Professor Moore's suggestions is that in the appointment of new young men the effort should be made to pair with Moore, Dickson, Bliss a young man of similar interests and of real research ability. In the Departmental circular just out the active members listed for our Department for 1926-7 are

- Moore
- Dickson
- Bliss
- Lane
- Slaught

The pairs Dickson-Barnard, Bliss-Graves are pairs of precisely the type desired, and Lane and Logsdon have related research domains. If we could add a member opposite Moore to complete a similar pair for him I should regard the Department as stronger in personnel than it has been for a long time. Eight persons on the list could be counted on definitely for work with thesis students. This is three more than we have ever had, I think, and our difficulties with such work should be greatly relieved.

In discussing candidates for the place opposite Moore we seemed to come back always to Chittenden and Hildebrandt. Moore prefers Hildebrandt. The choice between them seems to me a very even one. If such an appointment were made, I trust the new

The University of Chicago

One. If such an appointment is to be made, however, we should be sure that we are right and should think of the situation as it will be after Professor Moore retires as well as now.

(2) It was suggested that we again try to secure a mature man of the type of Bell. There is no doubt that we will have need of such a person. They are hard to move and expensive. Jackson was suggested because of his evident interest in his appointment here for next summer. It seems possible that he might be really interested to come and be a strong man for us. We should keep a sharp eye on him next summer and try to make up our minds about him.

(3) Your willingness to have Dickson and me carry one course throughout the year, besides thesis students, gives me great satisfaction. The privilege would not be abused. I am not looking for a life of ease, but desire primarily to keep strong research interests going continuously. It happens to be the type of life which holds out the greatest attraction to me personally, but as I observe the development of our Department it seems to me also clearly what the Department and our students need most from me. Dickson will lead that type of life against all obstacles, and I admire him for it. He will flourish scientifically even more luxuriantly, however, with the encouragement of such a schedule.

In this connection let me list my present thesis students so that you may see what we are doing. Dickson has a similar list, Moulton perhaps a longer one, and Lane has one with relatively more master's candidates. The following are those now here working with me on theses:

- 2 with Ph. D. theses complete except for final writing,
- 2 in the midst of Ph. D. theses with progress indicating success,
- 2 working hard on Ph. D. theses but doubtful and needing too much advice,
- 2 master's candidates coming up this Quarter or next.

Of the Ph. D. candidates away there are
- 1 with thesis awaiting final approval from me, coming up next summer,
- 1 who has made progress indicating success,
- 1 who has worked hard but is doubtful,
- 1 who has just started but seems a thoroughly good student.

Three people are applying strongly for thesis subjects but I am holding off until they arrive on the ground ready for work. Two are good, one doubtful. As you see some of these may fall by the wayside, but
The following is a typewritten text that appears to be a letter or a formal communication. The content is not clearly legible due to the quality of the image, but it seems to be discussing a topic related to the development of a system or project and includes references to the importance of certain features or aspects.

The text is not fully transcribed due to the quality of the image, but it appears to start with a section discussing the importance of certain features or aspects, possibly related to a technical or engineering project. The text continues with further details that are not clearly visible due to the image quality.

The conclusion of the text is not visible, but it seems to be closing with a final thought or statement about the importance of the topics discussed.
all take time.

(4) Our summer quarter work is at present to too large an extent mere conference drudgery for the regular members of the Department. The visitors seem to have an ideally interesting kind of a time. We must protect ourselves if possible against fruitless conferences with many people who merely want to discuss personal troubles or vague plans for work for higher degrees in a more or less distant future. We should on the other hand be accessible to the bona fide workers. This is a problem of management plus assistance. It can be solved, but assistance of the right sort has hitherto been too limited. The non-essential distractions of the summer quarter are at present too serious an interruption of personal research and of work with good students. Before my next summer quarter I want very much to try to plan to regulate these matters reasonably.

For next year, as you know, Lane is to be in Europe and Barnard is likely to be appointed to an N.R.C. Fellowship. The program as outlined by Professor Moore will therefore be interrupted even if approved by you. But if you appreciate the need of development as he outlines it, and regard his plans with favor and as possible of achievement in a reasonable time, I should think that the future has much encouragement for us.

I hesitate to write to you at such length but wish to assure you of my interest. If you think our conversation of the other day should be continued I am ready at any time. You know that I shall not make any decisive move without discussing all phases frankly with you.

Truly yours,

[Signature]
If you have time...

(1) Other summer quarter work is at present too large, so as to accept any new activities or projects. The regular members of the Do-Gar School project must be handled with care. A new project is in the works, but it would take a large amount of time and effort to start. The project would require a large amount of time and effort to start.

(2) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(3) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(4) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(5) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(6) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(7) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(8) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(9) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(10) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(11) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(12) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(13) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(14) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(15) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(16) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(17) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(18) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(19) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(20) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(21) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(22) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(23) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(24) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(25) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(26) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(27) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(28) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(29) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.

(30) The next quarter, the plan for the after-year will be to prepare for the following year. This is a very important step in preparing for the next year's plan. The plan will be to prepare for the following year. The plan will be to prepare for the following year.
PURE AND APPLIED
MATHEMATICS
AT THE
UNIVERSITY OF CHICAGO
PURE AND APPLIED
MATHEMATICS
at the
UNIVERSITY OF CHICAGO
PURE AND APPLIED
MATHEMATICS
at the
UNIVERSITY OF CHICAGO

I. Science and Civilization.

Mankind has set for itself the stupendous task of discovering Nature's secrets and of using the material universe for its benefit. In a period shorter than that covered by the struggle between Rome and Carthage, or that of the Crusades, or even that of the exploration and settlement of America, the ways of living of the civilized world have been completely transformed. Since the days of our grandparents such terms as tallow candles, ox teams, scythes, couriers, homespun, and log cabins have become obsolete, and in their place has grown up a much more extensive vocabulary for things that were undreamed of a generation ago.

In the last hundred years, the ability of civilized men to produce the necessities and luxuries of life has increased four-fold as a consequence of scientific discoveries and applications. The wealth produced yearly by the labor and effort of the people of this country now measures sixty billions of dollars, and about forty-five billions of this amount should be directly credited to the application of
GAINING AND APPLYING KNOWLEDGE

AND

EXPERIENCE

OF

THE

UNIVERSITY OF CHICAGO

I. Preparation and Integration

The University has for years been a leader in the development of educational programs and policies that foster the integration of knowledge and experience. It is our goal to provide our students with a comprehensive and well-rounded education that prepares them for success in their future endeavors.

This can be achieved through a variety of means, including:

- A strong emphasis on interdisciplinary studies
- Opportunities for hands-on learning and experiential education
- Access to cutting-edge research and technological advancements

By providing our students with these resources, we aim to equip them with the skills and knowledge necessary to thrive in a rapidly changing world.

In the face of mounting pressure, the quality of education continues to be a pressing issue. However, we are committed to ensuring that the University of Chicago remains a leader in the realm of education and research.

We are proud to offer a range of programs and services that support our students in their personal and professional growth. Our commitment to excellence is evident in our focus on integrating knowledge and experience, and we are dedicated to providing our students with the tools they need to succeed.

Thank you for your continued support and for being a part of this important community. We look forward to seeing what the future holds for the University of Chicago.
science. But even this is a very inadequate statement of the benefits of science; it does not take into account the improved health and the increased span of life due to better living conditions, or the leisure and opportunities that have been afforded for cultivating the mind and higher faculties. Progress in these latter directions, in the long run, probably constitutes by far the largest contribution of science to the welfare of mankind.

Within a night's ride of Chicago, there are, in unparalleled variety and abundance, nearly all the essentials for the prosperity and happiness of the human race—grain, live stock, cotton, timber, salt, iron, petroleum, copper, and lead. Within the same radius, living under a stable government, there are more than fifty millions of virile, intelligent, and ambitious people, whose wealth exceeds the wealth of both Europe and America in the days of Washington. Chicago is the industrial and business center of this empire, and in the midst of it is the University of Chicago symbolizing, and capable of becoming the center of, its intellectual life. The City builds skyscrapers and terminals and establishes financial institutions to care for the commerce that floods its gates. The University must erect buildings, provide libraries and laboratories, and secure endowment to care for the students who, in ever-increasing numbers, enter its doors for information and inspiration, and to support the researches upon which the continued progress of our race depends.

Although the city is enormously indebted to science for its prosperity, science asks no payment on back accounts. But in the interest of future development, the extent of which no
In 1967, the Second World War had ended, and the world was in a very uncertain state. The United Nations was under the leadership of the United States, and the Cold War was at its peak. The United States and the Soviet Union were the two superpowers, and their rivalry was intense.

The United Nations was established to promote international cooperation and prevent war. It was hoped that the world could work together to solve its problems and achieve peace. However, the Cold War era was marked by tension and conflict, and the United Nations often struggled to find effective solutions.

The role of the United Nations was to mediate disputes and promote dialogue. It was hoped that through peaceful means, the world could avoid the horrors of war. However, the Cold War era was marked by the proliferation of nuclear weapons and the threat of nuclear war.

The United Nations was also involved in a number of humanitarian and development initiatives. It worked to improve the lives of people around the world, providing food, medicine, and other necessities. However, the United Nations often faced challenges in implementing its programs, and its effectiveness was sometimes questioned.

In the years following the end of the Cold War, the United Nations continued to work to promote international cooperation and address global challenges. It faced new challenges, such as climate change and the ongoing conflict in Syria, but it remained committed to its mission of promoting peace, security, and prosperity for all.

References

The document contains a large number of references, including books, articles, and reports. The references are not included in this transcription.
one can adequately forecast, science is confident that the record of its accomplishments and the trend of the times justify large investments in its further advancement. And the University, as the preeminent representative and promoter of science, is an ideal agency through which such investment may be made, with the confident expectation that the dividends will be still more of those discoveries which on the one hand, improve the physical world, and, on the other, add to the dignity and glory of the human mind.

II. Mathematics, the Basis of all Science.

In all the service of science to humanity, Mathematics plays a very important - indeed an essential - part. As a science becomes more quantitative and exact, and its laws more accurately known, it becomes more mathematical and its achievements more dependent on the services of Mathematics.

Newton established the fundamentals of mechanics by mathematical study of the motions of the planets, and thus laid the foundations for the design of practically all modern machinery. The laws of reflection and refraction of light were found by experiment, and Mathematics took them and designed telescopes and microscopes, cameras and projection lenses, and other marvelous optical instruments, that could never have been made by the cut-and-try methods of earlier days. Mathematics has guided the construction of generators, motors, high-tension transmission lines, and other electrical machines and devices. Without the use of modern higher Mathematics, the problem of long-distance telephony could never have been solved. The methods
II. Mathematics: The Science of Quantity

In the process of learning mathematics, it is essential to understand the fundamental concepts. Mathematics plays a crucial role in many aspects of our lives, from basic arithmetic to advanced calculations. The study of mathematics helps in developing logical thinking and problem-solving skills.

The importance of mathematics cannot be overstated. It forms the basis for many fields of study, including science, engineering, economics, and computer science. Mathematics is the language of technology and is used to describe the world around us. It is essential in making predictions, understanding patterns, and solving problems.

The field of mathematics is vast and encompasses various branches such as algebra, geometry, calculus, and statistics. Each branch has its unique applications and significance. Mathematics is not just about numbers; it is about understanding the underlying patterns and relationships in the world.

In conclusion, mathematics is a fundamental tool that helps us make sense of the world. It is an essential discipline that is crucial for the development of society. By studying mathematics, we gain a deeper understanding of the world and develop critical thinking skills.
of celestial mechanics were applied to ballistics during the World War with astonishing results. In some cases the ranges of artillery were doubled, and the firing made eight times more accurate.

The role of Mathematics in the world's progress has already been notable, and it is daily becoming more essential in science, business and finance. The higher mathematics of today has in every generation been the everyday mathematics of tomorrow.

Mathematics not only serves all other sciences, but it enriches human life itself. It cultivates the highest faculty of man, that which most distinguishes him from the lower animals, the human reason. To foster mathematics is to promote a kind of human thinking which is fundamental to the advancement of civilization.

III. The Mathematical Sciences at the University of Chicago.

In Mathematics, especially on this continent, a generous share of accomplishment has been achieved at the University of Chicago. The history of Mathematics and the closely allied sciences of Physics and Astronomy at this institution is a record of the work of notable men.

Physics.

The discoveries of Professors A. A. Michelson and Robert A. Millikan and of others of the Physics staff constitute one of the most brilliant chapters in the history of modern science. Only four times since the Nobel Prizes
At a certain moment, we are faced with participating in an activity that is not yet complete. In some cases, this can lead to interesting and profound insight. As we continue to explore the role of mathematics in the activity, we discover that it is not only presenting more opportunities to solve problems, but also opening new avenues for knowledge.

Mathematics not only solves all other equations, but also provides a way to harness thinking and conduct fundamental research.

III. The Development of the Concept of Opposites

In mathematics, opposites on this continent, a connection exists that has been observed in the exponential fields of mathematics and the principles of opposite. To illustrate this, consider the following.

A period. A period and an opposite to the opposite exist.

Only now, since the moment, has
were established a quarter of a century ago, has the science prize come to an American. Michelson and Millikan are two of those prize winners. The former is the head of the Department of Physics at the University of Chicago, and the latter was for twenty-five years a member of that department. The Physics Department, since the beginning of the University, has probably been the outstanding Department of Physics in the entire country.

And Professor Michelson has undoubtedly been the most noted experimental physicist in the world. Fascinated as a youth with the subject of the velocity of light, he has made that subject one of his life passions. In a room with a temperature kept so constant that no human being, not even himself, could be allowed to enter, he succeeded in ruling a grating with 150,000 lines in a space of 10 inches, to be used in connection with his study of the spectrum. He is the inventor of the interferometer which has made possible measurements of a delicacy previously far beyond the power of man. He was the first person in the history of the world to measure the diameter of a star; and, in obtaining this measurement for the star Betelgeuse, he performed a feat equivalent to measuring the diameter of a penny at a distance of 1,000 miles! He has measured the meter in terms of light waves. Through observations which, with Professor Henry G. Gale, he made on the tidal effect of water in a pipe line at Williams Bay, Wisconsin, he has measured the rigidity of the earth. And he is now working on the effect of the rotation of the earth upon the velocity of light, a piece of research which is looked upon as a test of the Einstein theory of relativity.
were expected to remain a corner of a country, we, were, for a while.

During the war, we were stationed at the rear of the Department of Agriculture, and the rear was

part of the University of Oregon, and the rear was

very poor, we were expected to remain a corner of a country, we, were, for a while.

my friend, when he came to the rear of the Department of Agriculture, and the rear was

very poor, we were expected to remain a corner of a country, we, were, for a while.

We were expected to remain a corner of a country, we, were, for a while.
Millikan's work, for which he won the Nobel Prize for Physics, was the isolation and the measurement of the ultimate electrical unit, the electron. Though his investigation was wholly directed toward theoretical relations, its experimental results have been important in the development of wireless telephony.

Professor Arthur H. Compton has done important work on the X-Ray which may reverse the idea that light consists of waves and confirm Newton's old theory that light consists of streams of particles.

Associate Professor Dempster constructed in the Ryerson Laboratory the first apparatus for clearly analysing chemical elements into isotopes, thus introducing a great development in our ideas of the structure of matter.

Other important investigations are in progress under other members of the staff.

Mathematics.

Working closely with the Department of Physics, and in the same building, have been the kindred Departments of Mathematics and Mathematical Astronomy. Here Professors Eliakim H. Moore, Leonard E. Dickson, Gilbert A. Bliss, Ernest J. Wilczynski, Forest R. Moulton, and their colleagues have been making a brilliant record which their fellow mathematicians the world over have not failed to appreciate and applaud.

The scientific honors which have been awarded to the members of these two departments are conclusive evidence of their responsibilities of leadership in the mathematical affairs of the country and of the esteem in which their colleagues hold them.
Five of the fifteen mathematicians now members of the National Academy of Sciences are members of the faculty of the University of Chicago. Three of the mathematicians of the University have been Presidents of the American Mathematical Society, and two have been Editors-in-Chief of the Transactions of that Society. These are the highest honors in the American mathematical community. It is significant also of the wide influence of the members of these Departments that one of them is a Corresponding Member of the Paris Academy of Sciences and an Honorary President of the International Mathematical Union, and that another is the Vice-President for the United States of that Union.

Scientific honors have importance only as the symbols of scientific achievement. Unfortunately it is not always easy to describe in popular terms the results of mathematical research. It will suffice here to say that general analysis, the arithmetic of algebras, modular invariants, and projective differential geometry are fields of mathematics which were entirely originated by the staff of the University of Chicago and which have since received international recognition. Last year Professor Dickson was awarded for his work in the arithmetic of higher complex number systems, the $1000 prize offered by the American Association for the Advancement of Science, for the most important contribution to science presented at the annual meeting of the Association in Cincinnati.

Some of the contacts between mathematics and the affairs of practical life have been indicated in the preceding pages, and they might be multiplied indefinitely if one undertook to examine the applications of mathematics in detail.

The mathematical departments of the University are not
The application of personal assistance to the University was not

The personal assistance to the University was not
primarily engaged in the intimate applications of mathematics to engineering or business problems, but they are frequently called upon to advise upon mathematical questions with members of the neighboring departments of Geology, Chemistry, and Physics, and also at times with others who are not engaged in university work, as the following anecdotes will show. Recently a physicist approached a member of the Department of Mathematics with a problem requiring the solution of fifteen simultaneous equations upon which he had worked for two months with no success. The solution was furnished in two hours. In another case a graduate student working under the direction of one of the faculty members devised for a manufacturing concern a graphical method for a complicated cost problem which effected substantial savings. Again it was found after some study, for a manufacturer of large reservoirs, that a formula of differential geometry overcame a crucial difficulty in design which had baffled the more practical engineers of other institutions. During the war three of the mathematics faculty members entered the service of the Government in ballistic work. One of them became, in the course of a few months, the leading ballstician in this country. The problems in this domain which arose during the great struggle were insoluble by the classical methods of the science, and they yielded only to types of analysis which have been developed in connection with problems of astronomy and the so-called higher mathematics. These are a few only of the instances which go to show that higher mathematics and higher mathematicians are not so far removed from the practical affairs of life as is popularly believed.
primary energy in the ultimate application or mathematics.

also to ways in which mathematics can be used to understand and

solve problems in various fields, mathematics can be seen as a powerful tool for the solution of intricate mathematical problems.

The solution may involve techniques from a variety of fields, including logic, algebra, and geometry.

Moreover, the solution may require the use of advanced mathematical concepts, such as group theory, topology, and analysis.

In this context, mathematics is not only a tool for solving problems but also a means of exploring and understanding the world around us.

or life as to holistically pedaled...
Another field in which the mathematical departments at the University of Chicago have been notably useful is the training of instructors and professors of mathematics. The University of Chicago has a far larger number of bona fide graduate students in mathematics than any other institution in the country. The Departments of Mathematics and Mathematical Astronomy have graduated 131 Doctors of Philosophy, of whom 86 percent are now engaged in teaching in 71 colleges and universities. The following tabulation shows the present occupations of these graduates:

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professors</td>
<td>52</td>
</tr>
<tr>
<td>Associate Professors</td>
<td>30</td>
</tr>
<tr>
<td>Assistant Professors</td>
<td>19</td>
</tr>
<tr>
<td>Instructors</td>
<td>12</td>
</tr>
<tr>
<td>Private Research</td>
<td>3</td>
</tr>
<tr>
<td>Business</td>
<td>6</td>
</tr>
<tr>
<td>U. S. Navy</td>
<td>2</td>
</tr>
<tr>
<td>Deceased</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>131</td>
</tr>
</tbody>
</table>

Among the 40 institutions at which one or more University of Chicago Doctors in Mathematics are now engaged as full professors are Harvard, California, Chicago, Minnesota, Texas, Yale, Princeton, Cornell, Bryn Mawr, U. S. Naval Academy, Michigan, Wisconsin, Northwestern, Tulane; and in Canada, Manitoba, Saskatchewan and British Columbia.

IV. The Needs of the Departments and a Proposal.

At the present time, the work both in Physics and in Mathematics (including under the latter term Mathematical Astronomy) at the University of Chicago is being conducted in a single building, the Ryerson Physical Laboratory, erected in 1893 and enlarged in 1911-12 at a cost equal to the original expenditure.
Another effort to expand the educational opportunities of the University of Chicago has been noted. The University has taken steps to expand and improve its educational facilities. The new program includes an expansion of the University's graduate programs and the addition of new undergraduate courses.

Objectives of the new programs include:

1. To provide more opportunities for graduate education
2. To expand undergraduate offerings
3. To improve the quality of teaching
4. To increase the number of students

The new programs will be implemented over the next few years and are expected to have a significant impact on the University's reputation and enrollment.

To help finance these new programs, the University has raised funds through a variety of methods, including an increase in tuition fees and the establishment of new scholarships.

In conclusion, the University of Chicago is taking positive steps to expand its educational opportunities and improve its programs. These efforts are expected to benefit both current and future students.
The association of these departments in the same building was natural and mutually helpful, when their development was such that the building was adequate to house them both. But that time has long ago passed. At present the departments suffer serious detriment from sheer lack of space in which to do their work. They should still continue their association but in greatly increased space.

What Mr. Ryerson's generosity years ago enabled the University to do for Physics in building the Ryerson Laboratory and devoting a goodly sum annually to its maintenance, should now be done for Mathematics, by the erection of a proper building for it and the creation of an adequate endowment. Both departments have made for themselves a record of achievement unsurpassed, perhaps scarcely equalled, by any other departments of the University or by like departments elsewhere. But the very success of their work has created conditions which threaten seriously to check their development in the future. It has become difficult to increase the faculty of these departments or even to hold some of the best men because of inadequate space and facilities.

It is extremely difficult to maintain satisfactory working relationship with advanced students in a department such as Mathematics, which, with a staff of eleven members and a present maximum attendance of 200 graduate students in addition to many undergraduates, has but five classrooms, one small library, and five offices. Adequate space provisions for students engaged in advanced mathematical research would greatly increase their enthusiasm for their work and their success in it.
The competitiveness of future generations in the sense

participate and sustain our sustainability policies, deepening
governance and support for the policies and sustainable ways of living
and work. Our goal is to improve your well-being. To ensure
the government's action on innovation, we can learn from each other's
experience and apply to our own work. They apply with caution,
selectively and effectively, put in exactly increasing scope.

And it's important to encourage them also.

It's important to go for innovation in applauding the
trend. The importance of innovation is growing and companies to the
innovation and consequently, we go from the perspective of the
innovation at a broader perspective. It is the creation of a
new generation that will take over the New generation. The New
generation's new generation of the innovation at the higher
level.

It is the very essence of the New generation. It is the very essence of the
New generation with a new generation at the forefront of innovation.
In the past, we were innovative, we were not innovative.

In the front of innovation. To become innovative to continue with
the government and have the government with innovation.

Since the novelty of the New generation and the
new generation of innovation at the forefront of innovation.
In the past, we were innovative, we were not innovative.

To become innovative, we need to become aware of the
same.
A building for Mathematics would relieve both Physics and Mathematics from their embarrassment in the matter of space; and adequate endowment would ensure to Mathematics the continued expansion justified by its brilliant past and the increasing demands upon it.

There are few more attractive proposals within the power of the University to offer to its generous friends than the opportunity which this situation makes evident. It is an opportunity not only to perpetuate the name of a donor in connection with a great University and the future development of a fundamental science, but also to make a lasting contribution to human knowledge and welfare.

The financial need falls into two parts:

1. Building, with its equipment and a fund for its maintenance $1,000,000

2. Endowment for instruction and research in Pure and Applied Mathematics $1,000,000

Total $2,000,000

The building should be erected directly east of Ryerson Physical Laboratory and be connected with it by a tunnel on the basement level and by a bridge on the second floor. There would, of course, be a free exchange of courtesies between the departments and buildings, as there has been in Ryerson for thirty years. The joint departmental library of the departments should be located in either building, as may be found expedient, and other adjustments made as necessitated by the common interest. The cost of the building divides itself into the
A proposed financial statement was presented in the form of a

statement showing the potential monetary gains to the company.

Any excessive emphasis was avoided to maintain the

presentation concise. The potential benefits and the increase

benefit shown.

The next issue was the presentation of the

book on the company's actions to increase business volume.

It was essential to focus on the support and enhance the

presentation of the benefits and the future growth.

In connection with a brief summary and the future growth

necessity to present information and ideas to make a feasible

presentation of the monetary benefits and matters.

The financial report into the future time:

1. Profitable, with no competition

2. Have a large but the maintenance

3. Estimated for information and

4. Lowers in items and applying

Total

The following parts of a company's financial statement:

Revenue and expenses and the potential

member of the company's potential and the

performance of the department's function of

the governance entity to focus on objective and

another statement were not necessitated by the

example illustrated. The cost of the entire given entity into the

financial

following items: construction, $600,000; equipment and maintenance fund, $400,000.

The University is proposing to establish a number of "Distinguished Service Professorships," which shall carry a salary of $10,000 each and which shall be awarded only to men of distinguished ability and achievement. To hold one of these would constitute the highest honor that the University could bestow on any professor; and a professorship, bearing the name of the donor, would associate that name with a long line of the University's most eminent men.

The cost of endowing a Distinguished Service Professorship is $800,000, and it is proposed that at least one of these should be preferentially designated but not restricted for Mathematics, Pure and Applied. Thus, at least $200,000 of the proposed $1,000,000 endowment of Mathematics should be for the establishment of a professorship. The proposal to establish Distinguished Service Professorships at the University is explained more fully in a separate folder.

The remaining $600,000 for the general endowment of instruction and research in the Department and the $200,000 for a professorship would at once put the University in a position to make for Mathematics, Pure and Applied, an annual appropriation that would guarantee to the work in this field a future of stability, progress, and distinguished achievement. The addition of this endowment of $1,000,000 would also contribute to the fulfillment of the requirements of a conditional gift of the General Education Board which is to give the University $2,000,000 if it raises an additional $4,000,000 for endowment.
followed from construction totaling $3,600,000 or more.

To further the University's program to extend its facilities,

the University has determined to undertake a number of

expenditures totaling $3,600,000 or more. The University

intends to raise these additional funds by issuance of

bonds.

The bonds are to be issued in one of two ways: either

through a subscription or by tender offer.

The subscription method involves the University's

requesting subscriptions for the bonds from interested

parties.

The tender offer method involves the University's

procuring bids from interested parties.

The University has found that the subscription method

is the more feasible and practical approach for raising

the necessary funds.

The subscription method involves the University's

requesting subscriptions for the bonds from interested

parties.

The tender offer method involves the University's

procuring bids from interested parties.

The University has found that the subscription method

is the more feasible and practical approach for raising

the necessary funds.

The subscription method involves the University's

requesting subscriptions for the bonds from interested

parties.

The tender offer method involves the University's

procuring bids from interested parties.

The University has found that the subscription method

is the more feasible and practical approach for raising

the necessary funds.

The subscription method involves the University's

requesting subscriptions for the bonds from interested

parties.
In other words, this $1,000,000 for the endowment of Mathematics would bring to the University a further gift of $500,000 from that Board.

It is not often that $2,000,000 can be invested to better advantage in educational work. A gift of this amount would give a great impulse to the development of a fundamental science. It would add strength to the University at large and to the movement for the increase of its funds and its usefulness. It would, for all time, yield large dividends in the contributions to human knowledge and welfare which it would make possible.
Mr. W. E. Scott
Office of the President

Dear Mr. Scott,

Relative to the enclosed letter: I have no personal knowledge as to Mr. Shively. His letter head carries the designation Ph.D. and his letter indicates that it is of the University of Denver. I recommend the extension of guest card privileges to Dr. Shively. I feel very certain that this liberal policy on the part of the University serves to accelerate notably the country-wide appreciation of the opportunities offered by our graduate schools.

Yours very truly,

[Signature]

EHM:VL
Mr. M. Scott
Office of the President

Dear Mr. Scott,

Referring to the enclosed letter, I have no comments.

Referring to the enclosed, I must state that the

recommendation of M.D. in the letter indicates that it is of the

general interest. I recommend that the examination of each case

before the letter arrives to the University. I must, with certain
time, suggest that the letter be made to the University of

I refer to the letter that the University of the University of

merely be addressed to the

Yours very truly,

[Signature]
The University of Chicago
Office of the President

Mr. E. H. Moore —

Do you approve of giving Mr. Thively a Ph. D. Guest Card?

U. E. Scott
The University of Chicago

Date of the Presentation

[Handwritten text]

Mark 3:15
Juniata College
Huntingdon, Pa.

DEPARTMENT OF MATHEMATICS
CHAS. S. SHIVELY, PH. D.

Apr. 1, 1925

Ernest de Witt Burton, D.D.,
President, University of Chicago,
Chicago, Ill.

Dear Sir:—Are the privileges of Doctor of Philosophy as Guests of the University as set forth on p. 11 of the summer school announcement available for me?

I would like to spend the summer quarter at the university and have the privileges of the library and of attending certain classes, probably mathematics 304 and 394.

I received my degree from the University of Denver in 1919 and have been teaching mathematics in Juniata College since 1920.

Respectfully yours,

Chas. S. Shively
April 7, 1925.

My dear Mr. Shively:

I am enclosing a Guest Card, which will permit you the privileges of the libraries and attendance at lectures in Mathematics during the Summer Quarter.

Very truly yours,

William E. Scott (signed)

Secretary to the President.

Mr. Charles S. Shively,
Juniata College,
Huntington, Pa.

WES:3
MEMORANDUM TO DR. AITCHISON.

In confirming our conversation of several days since, I am filing Mr. Tucker's memorandum of the revised copy suggested for the photo-folio to face opposite the picture of the proposed mathematics building, with the understanding that you will take whatever action is necessary.

Yours very truly,

William E. Scott

I have o.K.ed this copy which is now being printed.
PROFESSOR TO DE TERENCE:

In accordance with the instructions of your letter of December 6th, I have attached herewith a copy of the letter of August 20th, and the appended note from the Department of the Interior, indicating that the Bureau of the Census is willing to incorporate any changes in the present arrangement of the field offices.

Yours very truly,

[Signature]

I have received your note, and shall forward the necessary corrections.