It is required to find the side of a square inscribed in a given triangle, where

Area shall be a Maximum.

Let \(d = x \), then \(y = \frac{\sqrt{d^2 - 6^2}}{2} \).

\[S = x^2 = d^2 - 6^2 \]

\[a = 6 \text{ a Maximum} \]

But \(AB - 6c = c \) \[AB = bc \]

Thus \(a - x = y = a = 6 \)

\[y = \frac{a^2 - 6^2}{2} \]

\[y = \frac{a^6 - 6^2}{2} \]

Then the rest of the proof is evident. Case 2.

\[TD = Ds \]

\[TD = Ts \]

\[TD = Ds \]

\[AD = AB \]
A Translation of the Quadrature of the Multiform Parabola, showing the use of the 11 principal Lemmas in the 1st Book of the Principia, and also the use of the first and last ratios in geometrical reasoning.

Let APB be a Parabola whose Parameter is AP. Let the Area ABP be regularly divided. Let the Parallelogram $APBD$, being AP and AD, AP meeting in B, be greater than all others. Then $t \times AD = \frac{s}{2}$. The whole $t \times AP = \frac{s}{2}$. Therefore $t \times AP = \frac{s}{2} - \frac{AD}{2} = \frac{s}{2}$.

\[\frac{1}{12} - \frac{1}{10} = \frac{1}{7} \]

\[\begin{array}{cccc}
6 & 10 & 20 & \frac{4}{2} \\
10 & 16 & 18 & \frac{4}{2}
\end{array} \]

\[\begin{array}{cccc}
5 & 18 & 13 & 4 \\
14 & 10 & 17 & 10
\end{array} \]

\[\begin{array}{cccc}
18 & 15 & 13 & 4 \\
14 & 10 & 17 & 10
\end{array} \]

\[t \times 10 \]

\[\begin{array}{cccc}
10 & 14 & 15 & 10
\end{array} \]

\[\begin{array}{cccc}
5 & 18 & 13 & 4 \\
14 & 10 & 17 & 10
\end{array} \]

\[\begin{array}{cccc}
10 & 14 & 15 & 10
\end{array} \]

\[\begin{array}{cccc}
5 & 18 & 13 & 4 \\
14 & 10 & 17 & 10
\end{array} \]

\[\begin{array}{cccc}
10 & 14 & 15 & 10
\end{array} \]

\[\begin{array}{cccc}
5 & 18 & 13 & 4 \\
14 & 10 & 17 & 10
\end{array} \]

\[\begin{array}{cccc}
10 & 14 & 15 & 10
\end{array} \]
Therefore the ultimate sum of
all the Parallelograms P2 shall be
to the ultimate sum of all the Par...
All these however soon at first
view difficult of conception, receiv-
less a notable example amongst
many others occurring to the
Reader, is able I think to illustrate
the subsequecy.

Thence the 2 Quantities A and
B as explained of which A be

\[A = 4x^2 + 3x \] and \[B = 2x^2 + x \]

the because of the unequall qua-
ty and infinite or of no value
ever as their first whole
infinite or nothing; I say
more the last Ratio of

\[\frac{A}{B} \] to vanishing is can seem for

\[\frac{2}{3} \] of the the other

section of the infinite to infinite but
that is thereafter to be assumed for
grenz falt of \(\frac{2}{3} \), for when

\[A \text{ may be } 14x^2 + 3x \text{ and } B = 2x^2 + x \]
A shall be to 15 (by dividing by x) as $2x+3$ to $2x+1$: this ratio is greater than $4x+2$ to $2x+1$ or $2:1$, and less than the ratio $6x+3$ to $2x+1$ or $3:1$. Let x vanish and at the same time by the vanishing of $4x+2x$ A shall be to $2x$ last as $3:1$.

Again, when A is to B universally, as $4x+3$ to $2x+1$, or by dividing by x, as $4+\frac{3}{x}$ to $2+\frac{1}{x}$, let the A D be increased in infinitum, and by the vanishing of $\frac{3}{x}$ and $\frac{1}{x}$, it will be to B last as 4 to 2 or $2:1$.

Therefore, A will never be to B in the ratio of $3:1$, or in the ratio $2:1$, but in the intermediate ratios and their ratios, as $3:1$ and $2:1$.

A is able to move to the distance B between which limit their infinitesimal ratios are restrained or determined within bounds, and to which they may come near as to any one grand distance (see Section under the end of the Text Section).

If the curvature of the angle of contact is θ

Definition

If to some very small part of a curve, or arc AC, and to the same parts, let the arc be applied of the smallest circular ordinate, that with the former may agree as much as is able to behold, the curvature of them accords to be the same, parts of another compass the place of the other, the curvature of the
outmost is. Doth the less, and of the inmost greater, if universally the curvature of a circle in any one plane is always by the reciprocal ratio of a circle equally curved, from whence the curvature is called finite curve, or where the diameter of curvature, that is the axis of a circle equally curved is finite.

Theorem 1. Fig. 52.
If three points be three points A, B, C and continually approaching one another in the plane of the line, the circle of the first uniting, let the circle D always pass over the same circle D well known, at last the same curve.

(De mon)
(If more is required) Let another circle have the same curvature

If it will not, let it pass the

for those points A, B, C, or it will not, let it pass the same, and the two circles make their selves in them 3 points, contrary to what is demonstrated by Euclid in the 10 Prop. of 3 Points of the Elements. If it cannot pass they, than circle D agrees more with the circle in the plane than the circle C of the same curvature that is than the circle ABC.

2. S. A. Therefore the circle D hath a determinate curvature. 2. S. D.)
Go to the head.

If out of 6 Points A B C only A D E write, the 5 C remaining immovable, the bent D shall touch the curve in the place A, but it shall not have the same curvature necessarily, unless the Point C shall touch to the other 2 A and B.

Scholium 1.

As there are 5 points, one by one, circles given, what will pass over 2 given points, only one of which circle pass over the other circle given, an infinite number. Which will touch the same curve in the same place, but only one that touch the same curvature, it shall congruence or coincide with the curve in the plan of Contour. Furthermore from the demonstrated arguments it will easily appear that if the smallest portion of line curves, when the curvature is finite, delight in all the same.

affections or rotations, as to Chords, Tangents, Sines (sagitta) &c. the which, they are of the same curvature, which in the bent buckle, of their own form from the motion of souls being diverse as it were from their just observer especially those in Newton's Philosophy, that only be of the greatest ease, in general to illustrate the plain. But not trouble me. And frame of His own 1. Fig. 60.

If a circle A B C shall touch a certain right line A D, it is to be touch the point A to move towards the immovable point A and let it ultimately join the curve, if this, the immovable point A of the movable point B. The chord A B is always understood to pass. I saw this Angle A B D between the chord A B and the tangent N D, will be ultimately less than any given right and the perpendicular A B of the same.
For the this style CD will be always equal to the angle ACD

The same is the case with the joining of A and B to vanish if from a point T the to the subline be

making any straight line AP, with the Tangent CD, I say, the

short is, the Tangent AP. And the AB will be ultimately in the ratio of equality. For let AC be parallel to the

subtangent PD, then the triangles

CAB and APD will be similar, from where AB and PD and

AD to DB shall be to one another

AC + CD and CD + AD, and the

point is to join with the point to

+ CD + AD and CD + AD will be

ultimately in the ratio of equality

indeed AB and AD and APD DB.
The subtense A D, and its equal D B, parallel line the line A F shall be to the square of the arc A B, or its
bisected B N C, directly, as the chord A C, inversely, of the position of the
chord A C to the parallel to the altitude D D, and the chord A B to the tangent H D.

For by similar triangles A B D B, A F to A H is A A B D D.

Then for universally B D on A D is equal to the square of the chord A D applied to the chord B C, the
mean chord is equal to the same.

And therefore in any curve line
Tangent, that is giv'n can Boyle S B
and tangents B D vanishing, and ordinates A F shall be to the square of the arc const
or New S B 0 A H.
A B is a circle which touches the curve at A, and raised therefrom have the same curvature with the curve in the point of contact.

OD is the line A D touches some curve in the point A that may cut the subtangent A D in B, and by from the points A and B the lines A E A B E are drawn, making the A B E, B A E respectively equal to the Angles A K, A K, then lines A E B E will ultimately concern in the Periphery of a Circle equal to the curve, and agreeing here with that other Curve in A.

A B is a circle which touches the curve at A, and raised therefrom have the same curvature with the curve in the point of contact. O D is the line A D touches some curve in the point A that may cut the subtangent A D in B, and by from the points A and B the lines A E A B E are drawn, making the A B E, B A E respectively equal to the Angles A K, A K, then lines A E B E will ultimately concern in the Periphery of a Circle equal to the curve, and agreeing here with that other Curve in A.

The following theorem respects A B is the Smallest of Curves, when curvatures are infinitely greater or infinitely less than theirs, let the SCHLIEREN at the end of the motion of the Principia.

The 2. Fig. 61.
If the curves A B, A C and the line A D mutually touch in the point A, by whatever law the line D B E shall be drawn, if B D B E is universally in only vanishing as A D, and A B C A D A E making no greater than 90°, using the Angle of Contact

A B C D E F G...
B. D. will be infinitely less than C. D. for the curved lines of the same genera with A. C. will to be drawn between the common A B and its Tangent A D.

Demonstration. - Let C D = $\frac{1}{2}$, and C D = $\frac{2}{3}$ making B. D. a finite. Let AD be at the same time $\frac{1}{2}$, and A D will now be $\frac{2}{3}$ as the vanishing quantity A D to the finite quantity C D, or as finite to infinite. Therefore, the vanishing distance A D is infinitely less than vanishing distance B D, also on this account, the angle B A D will be less than the angle B A D, 2 2 2.

Let S D be the center of forces B D or similar placed of other A B C D and also the least force described in the same time as the Point B D was in the mudder. Let the axis be complicated into equally spaced circles A B C D E on the side of cutting the radius B D and produced of equals for making the area A B C D take a
The centripetal forces in similar places are as the squares of the velocities in their places directly, as the radius drawn to the center of forces inversely. For the velocities at the after described times are as the after described times.

Corollary 2.

For the centripetal forces in similar places are as the radius drawn to the center of forces directly, and as the squares of the periodic times inversely. As the arcs AB and AB be described in no more than what is described in least time together, then even similar particles of similar figures in the least describe one times as fast: and the velocity in AB will be to velocity in BC, as ATCE to a BC, even as the spaces described directly, the times inversely described inversely.
But the. Arc. AE, is to the
similar Arc. itself, as the
length. BS to the similar lengh
AC. Therefore the velocity in AC
to the velocity in BS is to the square
of the length of the body in AC
to the square of the body in BS.
Not by the law
Coroll: The centripetal force
in BS can be at the square
of the body in AC. And as the Radius: from their
places drawn into the centers
of Forces. Because. Therefore the
centripetal force in BS is to the
centripetal force in AC as BS
to AC. But truly, as the similar
parts of similar Areas. So. The
Area, in AC is to the whole Area
of the right line described in the
time T. So the
that the Arc. AB, will be in an
mean proportional between AE
the Dean of the Circle. Therefore
sake is to T, and the Area
the same Points, and the Times
and it will be in the same ratio to the
moving with all the angles.
is defined by the right line, that is, of a whole bullet fixed to the center, acted by the same centripetal force, by which before it was forced in a circular path. For by the given centripetal force, the descent is as the square of the time, that is, from the supposition of the uniform motion of the body, as the square of the arc A'B, or as \(\frac{A'B^2}{E} \). From whence if in some particular case the length \(A'B \) and \(A'B \) appear to be equal, they will be always equal. Let the line A'B touch the circle in A', and the substance B'D be made parallel to the diameter A'E. If the arc A'B is made infinite,
Let \(x \) = Radiu
\(y = \) Circum. Area less Quadr
\(\frac{dy}{dx} = \frac{x}{y} - \frac{y}{x} \) = first part
\(\frac{dy}{dx} = \frac{a-x}{x} : ax - x^2 \) = Area Great
\(y + tx^2 + ax - x^2 = \) Area of the whole
\(y + ax \) = \(ax - y \) Side Great
\(\frac{dy}{dx} + x = y + \frac{x}{y} = \) radical
\(ax + y + x^2 = ax + x^2 = \text{Sufficient} \)
\(ax = 2ax + 2x^2 \) = whole.
\(\text{Thus} \)

\(x = 2a + 2x \cdot a + 2x \)
\[y = \text{Area} \]
\[x = \text{Radius}, \text{Then } y = \text{side of Greater} \]
\[a - \frac{y}{2} = \text{side of Greater} \]
\[ax - y = \text{Area of Greater} \]
\[ax - y^2 + x = (x - y) y + ax^2 \]
\[ax^2 + y^2 = 2yx^2 + ax + x^3 + x^4 \]

\[\frac{ax^2 + y^2}{x} = \frac{2yx + ax^2 + x^3 + x^4}{x} \]

\[\text{Base + Top Perimeter} = ax - 2axy + 2y + ax + 2x^2 \]

\[= a^2 \text{ for } ax^2 - 2axy + y^2 + ax^2 + x^2 = a^2x^2 \]

\[x^2 - 2axy = -ax^2 - 2x^6 \]

\[y = ax^2 = -ax^2 + x^6 \]

\[\frac{x^3 - ax^3}{x^4} - x^6 = \frac{ax^2}{x^4} - x^6 \]

\[\frac{ax}{x} \quad \left(\frac{ax^3 - ax}{x^4} - x^6 \right) \]

\[y = \frac{x^3 - ax^3}{x^4} - x^6 \]

\[\frac{x^3 - ax^3}{x^4} - x^6 \]

\[2x + y \]

\[x^2 + ax - \frac{y}{2} = 0 \]

\[x^4 + ax^3 - x^2 + ax^2 + 2ax + \frac{x^2}{2} \]

\[\left(x + ax - \frac{y}{2} \right)^2 = x^4 + ax^3 + 2ax^2 + \frac{x^2}{2} \]

\[\left(x + ax - \frac{y}{2} \right)^2 \]

\[\left(x + ax - \frac{y}{2} \right)^2 = x^4 + ax^3 + 2ax^2 + \frac{x^2}{2} \]

\[\left(x + ax - \frac{y}{2} \right)^2 = x^4 + ax^3 + 2ax^2 + \frac{x^2}{2} \]
\[6x^2 + 26x + 21y = a^2 - 2ax \]
\[36x^2 + 2y = a^2 - 6x^2 - 2ax \]
\[6x \cdot x^2 + y^2 = \frac{a^2 - 6x^2 - 2ax}{2} \]

Taking the derivative:
\[6x^2 + 16y^2 = m^2 - 2ax + 6x \]
\[6x \cdot x^2 + y^2 = m^2 - 2ax + 6x \]

When
\[6x^2 + 16y^2 = m^2 - 2ax + 6x \]
\[6x^2 + 16y^2 = m^2 - 2ax + 6x \]
\[a^2 - b^2 = m^2 \]

\[x + \frac{ma}{4b^2} = \frac{m^2 + m^2 a^2}{16b^4} \]
\[x = \frac{m^2 b^2 + m^2 a^2}{16b^4} \]

\[\frac{4m^2 b^2 + m^2 a^2}{16b^4} - \frac{ma}{4b^2} = \frac{4b^2 + a^2}{4b^2} \]
\[a = 10 - b \]

\[10b - 4 = gb = m \]
\[g = 18 \cdot 24 \]
\[g = \frac{18}{10} \cdot \frac{24}{5} \]
\[43 \frac{44}{1} = 24x \]
\[24x \cdot 21 = 24x \cdot 18 \]
\[24x \cdot 21 = 24x \cdot 18 \]
\[24x \cdot 21 = 24x \cdot 18 \]
\[24x \cdot 21 = 24x \cdot 18 \]
\[24x \cdot 21 = 24x \cdot 18 \]
\[24x \cdot 21 = 24x \cdot 18 \]
\[24x \cdot 21 = 24x \cdot 18 \]
\[
\begin{align*}
(x^2 - b^2)^{1/2} &= \pm x b \\
(x^2 - 2ux + a - b^2)^{1/2} &= 1 \pm b \\
(x^2 - b^2)^{1/2} + (x^2 - 2ux + a - b^2)^{1/2} &= a \\
2a(x^2 - b^2)^{1/2} + x^2 - b^2 &= x^2 - 2ux + a - b^2 \\
a - x^2 - b^2 &= (x^2 - 2ux + a - b^2)^{1/2} \\
a^2 - 2ax + x^2 - b^2 &= a^2 - 2ax \\
a^2 - d^2 + 2xd &= 2a(x^2 - b^2)^{1/2} \text{ Call } a^2 - d^2 = k \\
\sqrt{k + 2xd} &= 2a(x^2 - b^2)^{1/2} \\
m^2 + bmx + m^2d &= 4a^2x - 4a^2b \\
m^4 - 4a^2m^2x - 2m^2xd &= x^2 - 16a^2b \\
4m^2x^2 - 2m^2xd &= m^2 + 16a^2b \\
x^2 - \frac{dx}{2} &= \frac{m}{4} + \frac{a^2b}{m} \\
x^2 - \frac{dx}{2} + \frac{dx^2}{4} &= \frac{dx^2}{4} + \frac{a^2b}{m} \\
x - \frac{dx}{2} &= \left(\frac{a^2 + m + a^2b}{4}\right)^{1/2} \\
x &= \left(\frac{a^2 + m + a^2b}{4}\right)^{1/2} + \frac{dx}{2}
\end{align*}
\]
\[\text{Part I:}\]

\[x + \frac{a}{2} = \text{An} \quad \frac{x - \frac{a}{2}}{2} = B0 \]

\[x : \frac{x + a}{2} : : a : \frac{ax + ad}{2x} = \text{An} \]

\[a - ax + ad = \frac{ax - ad}{2x} = \text{An} \]

\[\frac{ax^2 - a}{2x} + \frac{1}{2x} = \frac{x - 2ax + d^2}{2x} = \text{An} \]

\[\frac{x^2 - 2xd + d^2 - x^2 + 2adx - a^2}{4x} = \frac{1}{2} \]

\[\frac{ax + ad + 2ax}{2x} \quad \frac{ax - ad + 2ax}{2x} = \text{An} \]

\[a \times a + d^2 \]

\[ax + ad + 2ax \]

\[\frac{ax^2 + axd + 2ax^2}{2x} \]

\[- \frac{a^2 x^2 + ax^2 + 2adx}{2x^2} + \frac{ad^2 + ldx}{2x^2} + \frac{2dcdx + hax}{2x^2} \]

\[2a^2 x^2 + 8ax^2 + 2adx^2 + hax^2 - a^2 \]

\[2a^2 + 4ax + 2dx = \text{An} \]

\[\text{John C.} \]

\[\text{New Mills} \]

\[1819 \text{ April} \]

\[9 \text{ April} 5 \text{ 1819} \]
\[AD + BD + AB \times x = AB \times BC \]
\[AB \times BC = AB \times BC \cdot \]
\[AB \times x = AB^2 \]
\[CP = \frac{15Q \times AC}{AO} \]
\[CP^2 = \frac{15Q \times AC^2}{AO^2} \]

\[\sqrt{10} \]

\[\frac{x}{1 + x} = \frac{2}{1} \]

\[\frac{2}{x+1} = \frac{2}{x} \]

\[\frac{2}{x} = \frac{2}{x+1} \]

\[\frac{x}{x+1} = \frac{2}{2} \]

\[\frac{x}{x+1} = \frac{2}{x} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x + 1 = x + 1 \]

\[x = \frac{2}{x} \]

\[\frac{2}{x+1} = \frac{2}{x} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]

\[x = \frac{2}{x+1} \]

\[x = \frac{2}{x} \]