EXPERIMENTAL STUDIES ON THE COMPOUND:

CYSTINE MERCURIC SULFATE

A Thesis
Submitted for the Master's Degree
at
THE UNIVERSITY OF PENNSYLVANIA

by
Pauline E. Wyman

1929
I Introduction

II Experimental

 Preparation of the Compound

 Methods of Analysis

 Nitrogen

 Mercury

 Sulfur

 Analytical Data

 Hygroscopicity

 Potentiometric Titration

 Optical Activity

III Discussion

 Composition

 Gray Compound

 IV Summary and Conclusion
I INTRODUCTION

Harris (1) has suggested a method for the determination of cystine in serum and egg albumin through the preparation and reduction to cysteine of the double mercuric sulfate salt of cystine. His method involves a reduction of the mercuric sulfate derivative of cystine with hydrogen sulfide with a final reoxidation of the cysteine thus formed to cystine. He has found that mercuric sulfate completely removes cystine in 5 - 7% sulfuric acid solution but that loss occurs in the recovery of cystine from the mercury precipitate.

Investigators in the Cambridge Laboratory claim that a very pure form of cysteine is obtained by this method, while Andrews (2) found that the cysteine prepared by this method has an \([\alpha]_D\) value of \(-20^\circ\) to \(-30^\circ\) as compared with that of pure electrolytically reduced cysteine of \(+9.7^\circ\). He has found that when hydrogen sulfide is passed into a suspension of the \(\text{HgSO}_4\) salt of cystine the result is a partial reduction to cysteine and \(\text{HgS}\) according to the reactions:
\[
\begin{align*}
2 \text{H} + \text{S} + \text{RSSR} & \rightarrow 2 \text{RSSH} + \text{S} \\
\text{Hg} + \text{S} & \rightarrow \text{HgS}
\end{align*}
\]

However, attempts to find in the HgS precipitate the free sulfur expected from this reaction have failed.

It would seem necessary that the composition of this intermediate Hg\text{SO}_4 derivative of cystine be ascertained before any explanation for the above discrepancies can be given.

The following account describes an attempt to determine the composition of the mercuric sulfate derivative of cystine, and to investigate some of its properties.
II EXPERIMENTAL

Preparation of the Compound

The samples for analysis were prepared by dissolving 10 gms. of cystine in 2500 cc. of 5% H_2SO_4. In an attempt to determine the quantitative relations of HgSO_4 to the cystine molecule, and assuming one HgSO_4 molecule to be attached to each amino group in the "double mercuric sulfate salt" of cystine, the stoichiometrical quantity of HgSO_4 reagent (10% HgSO_4 in 5% H_2SO_4) was added. A floculent white precipitate immediately appeared. Two such preparations were made and in both cases, upon standing, the upper layers turned gray (See later discussion). One preparation was allowed to stand at room temperature while the second preparation was placed in the cold room at 0°C for four days, but no change was apparent in the gray compound at the end of that time. An amount of HgSO_4 reagent equal to the quantity previously used, was added to both preparations thus doubling
the stoichiometrical ratio. More of the white compound precipitated.

After the addition of the excess HgSO₄ and upon standing the gray compound apparently disappeared.

Both preparations were carefully washed. The details of the washing are given below as this process evidently has an important bearing upon the results obtained. The washing was difficult due to the fact that the compound was cohesive and packed down tightly on the filter. Therefore to facilitate matters, the precipitate was transferred from the filter to a large beaker and there carefully washed with distilled water. The suspension was then filtered in successive portions, each portion being again washed when on the filter. When the entire suspension had been so treated, the precipitate was again transferred to a beaker and the process was repeated.

This method of washing was continued until the test for sulfate was almost negative. The washings no longer gave a positive test for Hg after 2.5 liters of distilled water had been used. Sample I
was washed with 61 liters of water; sample II with 55 liters. In both cases the final washings contained sulfate and were almost, though not entirely, neutral to litmus. After the first fifteen or twenty liters of washing the amount of SO₄²⁻ present in the filtrate was markedly decreased, but after that it did not decrease to any marked degree.

The samples were difficult to dry, calcium chloride and sulfuric acid proving ineffective. A vacuum desiccator containing phosphorous pentoxide was resorted to and was kept at 37°C. In about a week the weight was nearly constant. Due to the hygroscopicity of the compound it was difficult to obtain a constant weight. (See below). Sample II was first placed in the warm room and several weeks later in a vacuum desiccator.

The use of higher temperatures for drying was precluded by the instability of the compound. At temperatures of 250°C to 300°C the white compound blackens instantly with formation of metallic
mercury. This decomposition is also initiated at a temperature of 120°C and even below.

Methods of Analysis

Nitrogen

Total nitrogen was determined by the Kjeldahl method, ten percent sodium sulfide being used to precipitate the mercury as HgS after digestion was complete. Blanks were run on all reagents used.

Mercury

An attempt was made to determine the percentage mercury present by filtering through a Gooch crucible, the HgS precipitate obtained from the Kjeldahl determination. The method was unsuccessful because of difficulties in filtering. Some HgS was apparently in colloidal form, and the whole procedure appeared to be of doubtful reliability.

Therefore the following procedure was adopted: A 0.5 gm sample was oxidized with H₂SO₄ and K₂SO₄ as in the nitrogen determination.
After digestion was complete, the solution was cooled (on cooling beautiful needle like crystals of HgSO₄ appeared) and diluted to 200 cc. It was then heated to boiling and hydrogen sulfide passed in for three-fourths to one hour, while the solution was gently boiling on a hot plate; allowed to stand 48 hours and then filtered through a Gooch and washed free of SO₄. Very little free sulfur was present and this was extracted with carbon disulfide. The Gooch containing the HgS precipitate was dried to constant weight at 110°C. The filtrate was tested for complete precipitation of mercury. In most cases it had been complete. In one or two instances a maximum of two milligrams of HgS was obtained from the filtrate.

Sulfur

The percentage sulfur was determined by the gravimetric method with the precipitation of barium sulfate. A 0.5 - 1.0 gm sample was treated with fuming nitric acid and evaporated to dryness on a water bath. Then concentrated HCl was added and the solution again evaporated to dryness
(since nitrates are occluded by BaSO₄). The residue was taken up with water, diluted to 300 cc. and the solution neutralized with ammonia, methyl red being used as indicator. The precipitate of Hg (OH)₂ which appeared dissolved on the addition of 3 cc conc HCl. The solution was heated to boiling and excess hot Ba Cl₂ added drop by drop while the solution was kept gently boiling on a hot plate. The solution was digested on a water bath for two hours, allowed to stand overnight, filtered through a Gooch, washed free of Cl, ignited for half an hour to remove any organic matter and dried to constant weight at 110°.

The filtrate when tested showed complete precipitation of the BaSO₄.

The figures for percentage nitrogen, mercury and sulfur are given in Table I.

<table>
<thead>
<tr>
<th>Sample I</th>
<th>N%</th>
<th>Hg%</th>
<th>S%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.82</td>
<td>61.78</td>
<td>7.56</td>
<td></td>
</tr>
<tr>
<td>2.62</td>
<td>61.94</td>
<td>7.53</td>
<td></td>
</tr>
<tr>
<td>2.85</td>
<td>61.81</td>
<td>7.45</td>
<td></td>
</tr>
<tr>
<td>2.91</td>
<td>61.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.86</td>
<td>61.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.91</td>
<td>61.66</td>
<td>7.55%</td>
<td></td>
</tr>
</tbody>
</table>

Average 2.86% 61.66% 7.55%
Sample II	N%	Hg%	S%
3.04 | 60.34 | 7.14
3.04 | 60.35 | 7.18
3.05 | 60.36 | 7.34
3.05 | 60.30 | 7.22
Average | **3.06%** | **60.34%** | **7.22%**

Hygroscopicity

Mention has already been made of the difficulty in obtaining accurate weights of the samples analyzed. This was due to the slowness in drying and also to the gain in weight during the weighing of the samples. In order to determine the hygroscopicity of the compound a sample was removed from the desiccator and placed on a weighed watch glass. The percentage gain or loss in weight over a period of two weeks is given in Table II. The sample was allowed to remain in the balance case. It was found that the gain in weight was at first so rapid that no accurate weighing could be made for some time. It will be noted that the gain or loss in weight was influenced to a large extent by the condition of humidity. (On a rainy day there was a .37% gain as compared with .01% gain on the day previous)
Temperature and pressure greatly affect the rate of drying of the compound. One preparation when kept at 37° dried very much more rapidly than one placed in an ordinary calcium chloride desiccator at room temperature. A sudden gain in weight was noticed when the compound in the vacuum desiccator containing P₂O₅ was removed to a room at 23° from one at 37°. A gain in weight was also noticed when air was admitted to the vacuum desiccator in the warm room.
<table>
<thead>
<tr>
<th>Date</th>
<th>Weight of Sample</th>
<th>%Gain or loss over previous weighing</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.55</td>
<td>2.753 gms</td>
<td>...</td>
</tr>
<tr>
<td>12.05</td>
<td>2.755</td>
<td>.07</td>
</tr>
<tr>
<td>12.15</td>
<td>2.766</td>
<td>.11</td>
</tr>
<tr>
<td>12.25</td>
<td>2.760</td>
<td>.07</td>
</tr>
<tr>
<td>1.10</td>
<td>2.761</td>
<td>.04</td>
</tr>
<tr>
<td>2.10</td>
<td>2.762</td>
<td>.04</td>
</tr>
<tr>
<td>3.10</td>
<td>2.765</td>
<td>.11</td>
</tr>
<tr>
<td>4.10</td>
<td>2.767</td>
<td>.07</td>
</tr>
<tr>
<td>5.10</td>
<td>2.768</td>
<td>.04</td>
</tr>
<tr>
<td>1/2/29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.30</td>
<td>2.784</td>
<td>.58</td>
</tr>
<tr>
<td>4.00</td>
<td>2.782</td>
<td>.07 loss</td>
</tr>
<tr>
<td>1/3/29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>2.782</td>
<td>0.0</td>
</tr>
<tr>
<td>5.30</td>
<td>2.783</td>
<td>.36</td>
</tr>
<tr>
<td>1/8/29</td>
<td>2.785</td>
<td>.07</td>
</tr>
<tr>
<td>1/9/29</td>
<td>2.7853</td>
<td>.01</td>
</tr>
<tr>
<td>↑ 1/10/29</td>
<td>2.7957</td>
<td>.37</td>
</tr>
<tr>
<td>↑ 1/11/29</td>
<td>2.7934</td>
<td>.08 loss</td>
</tr>
<tr>
<td>↑ 1/12/29</td>
<td>2.7880</td>
<td>.20 loss</td>
</tr>
<tr>
<td>1/14/29</td>
<td>2.7895</td>
<td>.02</td>
</tr>
<tr>
<td>1/15/29</td>
<td>2.7915</td>
<td>.11</td>
</tr>
</tbody>
</table>

N.B. Fourth decimal place approximate

↑ Rainy day

↑ Clear - warm

Maximum gain in weight = 1.55% on 1/10/29.
Potentiometric Titration

To obtain a check on the analytical results, which showed a one to three ratio of cystine to mercury (see below), several potentiometric titrations were made. 0.5 gm l cystine were dissolved in 50 cc. of 5% H₂SO₄ and the 10% HgSO₄ reagent was added one cc. at a time, from a burette. The voltage was measured by a *Type K* potentiometer using a Standard Weston cell and calomel half-cell. Both bright and platinised platinum electrodes were used, but the most satisfactory results were obtained with platinum black. An agar-KCl bridge between the calomel cell and the cystine solution was necessitated by the fact that the presence of halides greatly increased the solubility of the mercury compound and gave erratic curves. For example when 25 cc. KCl solution were added a marked alteration in the titration curve resulted. Further experiments with bromide and iodide gave parallel results; the mercury-cystine compound quickly dissolved leaving only, in the case of the iodide, a slight precipitate of mercuric iodide.

In the absence of any halide, a curve was obtained (Fig. 1) with a
definite maximum at about 7 cc. of 10% \(\text{HgSO}_4 \) reagent, with no
indication of any other maximum or minimum. This would seem to show
a \(1:1 \) ratio of cystine to mercuric sulfate (0.5 gm. cystine reacting
with 0.62 gm. \(\text{HgSO}_4 \)), with no indication of such a compound with a
\(1:3 \) ratio as shown by analysis. There was no evidence of any
adjustment in composition of the compound.

It would seem from these results that there is a possibility,
depending on the method of preparation, of the formation of more
than one compound of \(\text{HgSO}_4 \) with cystine.
0.5 gm cystine in 50 cc 5% HgSO₄ titrated with 10% HgSO₄ reagent

Ordinate - voltage
Abscissa - cc HgSO₄ reagent

Fig. 1.
Optical Activity

The filtrate obtained from the precipitation of the HgSO\textsubscript{4} - cystine was tested for the presence of an optically active substance to check Harris' statement as to the completeness of precipitation.

A rotation of \(+.15^\circ\) was observed. The initial washing gave a rotation of \(+.13^\circ\). These dextro-rotatory results are similar to those obtained by Andrews (unpublished results) who observed rotations of \(+.11^\circ, +.05^\circ, +.10^\circ, +.07^\circ\) in such solutions. The asymmetry present in this active substance must come from the cystine and precipitation is not quantitatively complete. This constitutes all the information we have at present on this subject which needs further investigation.
III DISCUSSION

Composition

The cystine molecule contains two basic and two acidic groups. It is possible, then, that mercury may replace the hydrogen of a carboxyl group or that the HgSO₄ molecule may attach itself to one or both of the amino groups. The salts thus formed may hydrolyze with the formation of a basic mercuric salt or hydroxide.

Considering the nitrogen and mercury percentages obtained in Sample I, we find a definite ratio of nitrogen to mercury of 2 : 3 or one cystine molecule to three mercury.

\[
\frac{\text{N}}{\text{14.01}} = 0.2042 (= 0.1021 \text{ cystine})
\]

\[
\frac{\text{Hg}}{\text{200.6}} = 0.3084
\]

Assuming then that three HgSO₄ molecules are attached to the cystine molecule, a compound with a molecular weight of 1190.24 would result, giving percentages of nitrogen and mercury lower than those actually found, as indicated in Table III. In other words
the molecular weight of such a compound as is indicated by a ratio
of 1 cystine : 3 HgSO₄ is too high to agree with the experimental
findings.

<table>
<thead>
<tr>
<th>Possible Compositions</th>
<th>N%</th>
<th>Hg %</th>
<th>S%</th>
<th>Mol. Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) C₈H₆O₆N₄S₂ • 3 Hg SO₄ 6'12 4 2 2 4</td>
<td>2.48</td>
<td>55.22</td>
<td>14.18</td>
<td>1160.24</td>
</tr>
<tr>
<td>(B) C₈H₆O₆N₄S₂Hg • 2 Hg SO₄ 6'10 4 2 2 4</td>
<td>2.72</td>
<td>58.30</td>
<td>12.43</td>
<td>1032.16</td>
</tr>
<tr>
<td>(C) C₈H₆O₆N₄S₂Hg • HgSO₄ • Hg(OH)₂ 6'10 4 2 2 4</td>
<td>2.69</td>
<td>62.03</td>
<td>9.92</td>
<td>970.18</td>
</tr>
<tr>
<td>(D) C₈H₆O₆N₄S₂ • HgSO₄ • 2 HgO 6'12 4 2 2 4</td>
<td>2.89</td>
<td>62.03</td>
<td>9.92</td>
<td>970.18</td>
</tr>
<tr>
<td>(E) C₈H₆O₆N₄S₂Hg • HgO • HgSO₄ 6'10 4 2 2 4</td>
<td>2.94</td>
<td>63.21</td>
<td>10.10</td>
<td>952.14</td>
</tr>
<tr>
<td>(F) C₈H₆O₆N₄S₂Hg • 2 Hg(OH)₂ 6'10 4 2 2 4</td>
<td>3.09</td>
<td>66.27</td>
<td>7.06</td>
<td>906.09</td>
</tr>
<tr>
<td>(G) C₈H₁₀O₄N₂S₂Hg • 2 Hg(OH)₂ • 4H₂O 6'10 4 2 2</td>
<td>2.85</td>
<td>61.40</td>
<td>6.54</td>
<td>950.11</td>
</tr>
<tr>
<td>(H) C₈H₁₀O₄N₂S₂Hg • 2 Hg(OH)₂ • 3H₂O 6'10 4 2 2</td>
<td>2.91</td>
<td>62.55</td>
<td>6.66</td>
<td>962.11</td>
</tr>
<tr>
<td>(I) C₈H₁₀O₄N₂S₂Hg • 2 Hg(OH)₂ • 2H₂O 6'10 4 2 2</td>
<td>2.97</td>
<td>63.74</td>
<td>6.79</td>
<td>944.1</td>
</tr>
</tbody>
</table>

Experimental Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>N%</th>
<th>Hg %</th>
<th>S%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2.86</td>
<td>61.86</td>
<td>7.55</td>
</tr>
<tr>
<td>II</td>
<td>3.05</td>
<td>60.34</td>
<td>7.22</td>
</tr>
</tbody>
</table>
Again if we assume two \(\text{HgSO}_4 \) molecules and another mercury molecule to be present in such a compound as the following:

\[\text{H}_2\text{C} - \text{S} - \text{S} - \text{CH}_2 \]

\[\text{HgSO}_4(\text{H}_2\text{N})\text{CH} \quad \text{H}_2\text{C}(\text{NH}_2)\text{HgSO}_4 \]

\[\text{COO} - \text{Hg} - \text{COO} \]

we obtain a molecular weight of 1032.16 and nitrogen and mercury percentages of 2.72 and 58.30 respectively, the mercury percentage being too low to agree with the experimental findings even for sample I.

It is quite possible, however, that due to repeated washing one or both the \(\text{HgSO}_4 \) molecules might have become hydrolyzed. (It is worth noting in this connection that when the samples were prepared and washed the washings were never completely free of \(\text{SO}_4 \).) If one \(\text{HgSO}_4 \) had hydrolyzed the following compound \((G) \) would result:
(c) \[
\begin{align*}
\text{H}_2\text{C} & \quad \text{S} \quad \text{S} \quad \text{CH}_2 \\
\text{Hg(OH)}_2 (\text{NH}_2)\text{CH} & \quad \text{RC(} & \text{NH}_2)\text{HgSO}_4 \\
\text{C}00 & \quad \text{Hg} \quad \text{C}00
\end{align*}
\]

(d) \[
\begin{align*}
\text{H}_2\text{C} & \quad \text{S} \quad \text{S} \quad \text{CH}_2 \\
\text{NH}_2 & \quad \text{C}0 & \quad \text{RC(} & \text{NH}_2)\text{HgSO}_4 \cdot 2\text{HgO} \\
\text{C}00\text{H} & \quad \text{C}00 \text{H}
\end{align*}
\]

(D) represents another possible compound of the same molecular weight as (C), but with a different molecular arrangement. Both have a molecular weight of 970.17 and percentages of N and Hg equal to 2.89 and 62.03 respectively which do not differ radically from those actually obtained on analysis, i.e., N = 2.86%, Hg = 61.86%.

If both HgSO₄ molecules had hydrolyzed to Hg(OH)₂ molecules a compound with a molecular weight of 908.09 would result which is far too low to agree with the analytical data. If three Hg(OH)₂ molecules were present the molecular weight would still be too low = 944.13. If three HgO molecules or two HgO and one Hg were
present compounds of even lower molecular weight would result. A compound such as the following gives a somewhat higher, but not high enough molecular weight (see table III) for the calculated percentages to agree with the experimental findings.

\[
\begin{align*}
\text{H}_2\text{O} + \text{S} - \text{S} - \text{CH}_2 \\
\text{HgO(NH}_2\text{)CH} & \quad \text{HC(NH}_2\text{)HgSO}_4 \\
\text{COO} - \text{Hg} - \text{OO}
\end{align*}
\]

Compounds (C) and (D), then, are the most plausible as far as the nitrogen and mercury percentages are concerned.

But the theoretical value for sulfur for either one, 9.92%, is much higher than the analytical value obtained, i.e., 7.55%. A possible source of error in the method used for the determination
of sulfur would be in the incomplete oxidation of the sulfur with
subsequent loss due to the evolution of \(\text{SO}_2 \).

Osborne suggests that the fusion method for the determination
of sulfur is much to be preferred because of the possible evolution
of \(\text{SO}_2 \) in the nitric acid oxidation method, etc. Several fusions
were tried, but the method was less satisfactory due to the tendency
of the melt to attack the walls of the crucible.

Also several oxidations with bromine in potassium bromide solution,
followed by nitric acid, were tried with no better result.

Assuming the sulfur determinations to be correct in order to account
for the low value obtained without materially changing the molecular
weight from 970.18, several hydrated forms were postulated containing
one less sulfur atom.

\[
\begin{align*}
\text{(II)} & \quad \text{(I)} \\
\text{H}_2 \text{O} - S - S - \text{CH}_2 & \quad \text{Hg}_2 \text{S}_2 \text{S}_2 \text{H}_2 \\
\text{Hg(OH)} \text{(NH)} \text{CH} & \quad \text{Hg(OH)} \text{CH} \text{Hg(OH)} \text{Hg(OH)} \\
\text{COO-Hg} - \text{OOG} & \quad \text{COO-Hg} - \text{OOG} \cdot 2\text{H}_2 \text{O}
\end{align*}
\]
By referring again to Table III, it is readily seen that in the above hydrated forms the theoretical nitrogen and mercury percentages are raised considerably above the analytical ones, while the sulfur falls below that value found on analysis. If four molecules of water are assumed the mercury as well as the sulfur percentage falls below the analytical value. (Table III)

Thus a comparison of the sulfur, nitrogen and mercury ratios and a study of the percentage composition of the possible compounds, compared with analytical data, would indicate that we are dealing with a mixture in Sample I. It is quite possible that the compound originally precipitated may have contained two (or even three) \(\text{HgSO}_4 \) molecules which on prolonged washing were either partially or wholly hydrolyzed as shown by the following examples:
The sample analyzed may be a mixture of I, II, III representing various degrees of hydrolysis.

Similar difficulties were encountered in reconciling the analytical data obtained for Sample II with any plausible composition. Its analysis points to the same conclusion: that a mixture is present, that such factors as temperature, amount of washing, etc., will
materially affect the composition.

Gray Compound

The above conclusion is further borne out by the appearance of the gray compound, previously mentioned, when the HgSO₄ derivative of cystine was incompletely precipitated. In the preparation of both samples for analysis the stoichiometrical quantity of HgSO₄ reagent was added (assuming two HgSO₄ molecules to be attached to one cystine molecule) and in a short time the upper layers had a grayish appearance, the rest resembling the usual flocculent white precipitate. Samples of the gray precipitate when examined under a microscope exhibited a mass of definite pin-like "crystals". (Fig. 2) Some of the pins being bent but not broken.

Fig. 2
Their appearance suggested the possibility of a mold, but on testing the solution for mercuric ion a positive test was obtained. It seems improbable (though not impossible), that a mold would exist in an acid solution of a mercuric salt. A temperature of 0° for four days did not affect the appearance of the gray precipitate. Samples of both gray and white precipitate were removed and placed in flasks for future reference.

To the main portion of the precipitate was added a quantity of HgSO₄ reagent equal to that used in the initial precipitation. More of the usual white variety of precipitate then appeared.

In order to minimize the possibility of mold formation a one gram sample of cystine was dissolved in 250 cc. 5% HgSO₄ and the solution boiled for fifteen minutes. The stoichiometrical quantity of reagent (assuming two HgSO₄ molecules) was added and the compound precipitated from the hot solution. The Erlenmeyer flask containing the solution was immediately covered with a sterilized beaker. Within an hour the
gray compound made its appearance, and later practically the entire precipitate was of this character. After cooling a specimen was examined microscopically. Masses of short pins were observed—some arranged as in burrs. Later examination of the same slide showed the presence of long needle-like crystalline forms while the pins were fewer in number. In one instance the needles split across the longer axis. In a previous precipitation when excess HgSO₄ had been added and the material stirred up, a few needles and many irregular, broken crystals were observed.

Fig. 3.
A plausible mode of formation of these fragments from the "pins" is indicated in Figure 4, which depicts various observed forms.

![Diagram](image)

Fig. 4.

A sample of preparation II examined just before filtering (after excess HgSO₄ had been added) appeared to have the final form in Figure 4. Perhaps an explanation of previous inability to obtain a crystalline form of the HgSO₄ derivative of cystine is the fact that on standing the crystals become packed down into a cohesive amorphous looking-mass, which under the microscope appeared to consist of masses of irregular plates.
IV SUMMARY AND CONCLUSION

An analysis of two preparations of the HgSO₄ derivative of cystine described by Harris, was made and the percentages of nitrogen, mercury and sulfur determined. The results indicated a probable hydrolysis by repeated washings of the original compound precipitated, the sample analyzed probably being a mixture of several compounds representing various degrees of hydrolysis.

The results of the analysis showing a 1 : 3 ratio of cystine to mercury and those of the titration curves showing a 1 : 1 ratio, and the formation of the gray compound as an intermediate step, indicate the probability of formation of a series of compounds of HgSO₄ with cystine with a composition depending on the method of preparation.

The possibility of formation of more than one compound with HgSO₄ and cystine may account for the discrepancies already noted between Andrews and different workers in the Cambridge Laboratories, in the preparation of a pure form of cysteine by the reduction of the
HgSO₄ derivative of cystine.

The filtrate from the precipitation gave a slight optical rotation of +.15°, and the initial washings +.13°.

The compound formed is extremely hygroscopic.

It is very unstable at temperatures of 200° C and above.

A gray compound having an unstable pin-like structure was obtained as an intermediate step in the preparation of the sample for analysis.

It suggests a crystalline form of some HgSO₄ salt of cystine, although the idea of possible fold formation is not altogether precluded.

Further standardization of the conditions of preparation of this compound is required before consistent data as to composition and properties can be expected.
BIBLIOGRAPHY

(3) Osborne, T. B. Jour. Am. Chem. Soc. 1902 - 24 - 140